Sparse Estimation of Multipath Biases for GNSS (in french)

Abstract

The evolution of electronic technologies (miniaturization, price decreasing) allowed Global Navigation Satellite Systems (GNSS) to be used in our everyday life, through a smartphone for instance, or through receivers available in the market at reasonable prices (low cost receivers). Those receivers provide the user with many information, such as his position or velocity, but also measurements such as propagation delays of the signals emitted by the satellites and processed by the receiver. These receivers are thus widespread for users who want to challenge positioning techniques without developing the whole product. GNSS signals are affected by many error sources between the moment they are emitted and the moment they are processed by the receiver to compute the measurements. It is then necessary to mitigate each of these error sources to provide the user the most accurate solution. One of the most intense research topic in navigation is the phenomenon of reflexions on the eventual obstacles in the scene the receiver is located in, called multipath. The aim of this thesis is to propose algorithms allowing the effects of multipath on GNSS measurements to be reduced. The first idea presented in this thesis is to assume these multipath lead to sparse additive biases. This hypothesis allows us to estimate this biases thanks to efficient methods such as the LASSO problem. The second idea explored in this thesis is an estimation method of GNSS measurement errors corresponding to the proposed navigation algorithm thanks to a reference trajectory, which assumes these errors can be modelled by Gaussian mixtures or Hidden Markov Models. Two filtering methods corresponding to these two models are studied for GNSS navigation.

Publication
PhD Thesis
Julien LESOUPLE
Julien LESOUPLE
Lecturer/Researcher

My research interests include statistical signal processing applied to navigation.