Sparse Estimation of Multipath Biases for Global Navigation Satellite Systems

Julien LESOUPLE

Supervisors: Jean-Yves TOURNERET, François VINCENT, Marc POLLINA, Thierry ROBERT

15 March 2019

in collaboration with: Mohamed SAHMOUDI, Franck BARBIERO, Lionel RIES, Willy VIGNEAU, Frédéric FAURIE, Nabil JARDAK

Outline

Introduction

State Space Model

Sparse Estimation

Bayesian Estimation

Mixture Models

Conclusions and Future Works

Introduction

GPS Applications¹

LBS: Location-Based Services 80% of Smartphones

¹ European GNSS Agency. GNSS Market report. Issue 5. 2017.

¹ European GNSS Agency. GNSS Market report. Issue 5. 2017.

Julien LESOUPLE

TéSA, CNES, M3 Systems, IRIT, ISAE

GNSS

Global Navigation Satellite Systems

- ▶ GPS: USA,1973
- ► GLONASS: URSS, 1976
- Compass-Beidou: China, 1983 (Beidou) 2007 (Compass)
- ▶ Galileo: EU, 1999
- QZSS: Japan, 2002
- IRNSS: India, 2006

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 000000
 0000000
 0000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 00

GNSS Satellites

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 000000
 0000000
 0000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 00

GNSS Satellites

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 000000
 0000000
 0000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 00

GNSS Satellites

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 0000000
 0000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000

Principle: trilateration

 d_1

 S_1

Principle: trilateration

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 0000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000

Principle: trilateration

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 0000000
 0000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 00

Signal propagation (1)

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 0000000
 0000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 0

Signal propagation (1)

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 0000000
 0000000
 0000000
 0000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000

Signal propagation (1)

Who? (satellite ID) When? (emission date) Where? (orbit parameters)

0000000 Signal propagation (1) Who? (satellite ID) When? (emission date) Where? (orbit parameters) lonosphere : electrons, \sim 50-1000 km

Bayesian Estimation

Mixture Models

Conclusions

Sparse Estimation

Introduction

State Space Model

0000000 Signal propagation (1) Who? (satellite ID) When? (emission date) Where? (orbit parameters) lonosphere : electrons, \sim 50-1000 km Troposphere : gaz, \sim 12 km

Bayesian Estimation

Mixture Models

Conclusions

Sparse Estimation

Introduction

State Space Model

Signal propagation (2)

Introduction 000000●	State Space Model	Sparse Estimation	Bayesian Estimation	Mixture Models 000000	Conclusions 000000	
GNSS receiver						

Antenna

State Space Model

Navigation problem²

State vector:

Aeasurements for satellite *i* at time *k*

$$p_{i,k} = \underbrace{\|\mathbf{r}_{k} - \mathbf{r}_{i,k}\|_{2}}_{d_{i,k}} + b_{k} + \varepsilon_{i,k}$$

$$\dot{\phi}_{i,k} = (\mathbf{v}_k - \mathbf{v}_{i,k})^T \mathbf{u}_{i,k} + \dot{b}_k + e_{i,k}$$

r $_k: receiver's position satellite's position$ **v** $_k: receiver's velocity the satellite's velocity$ **b** $_k receiver's clock drift$ **c** $_i_k: pseudorance error$ **c** $_i_k: pseudospeed error$

²Paul D. Groves. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems. 1st ed. Artech House Publishers, 2008.

 $\boldsymbol{\xi}_k = \{ \mathbf{r}_k, \mathbf{v}_k, \mathbf{b}_k, \mathbf{b}_k \} \in$

Julien LESOUPLE

TéSA, CNES, M3 Systems, IRIT, ISAE

Navigation problem²

State vector:

Measurements for satellite i at time k

$$\rho_{i,k} = \underbrace{\|\mathbf{r}_{k} - \mathbf{r}_{i,k}\|_{2}}_{d_{i,k}} + b_{k} + \varepsilon_{i,k}$$

$$\dot{\rho}_{i,k} = (\mathbf{v}_k - \mathbf{v}_{i,k})^T \mathbf{u}_{i,k} + \dot{b}_k + e_{i,k}$$

 r_k : receiver's position $r_{i,k}$: satellite's position v_k : receiver's velocity b_k : receiver's clock bias $\varepsilon_{i,k}$: pseudorange errorpseudospeed error

²Paul D. Groves. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems. 1st ed. Artech House Publishers, 2008.

 $\boldsymbol{\xi}_k = \{ \mathbf{r}_k, \mathbf{v}_k, \mathbf{b}_k, \mathbf{b}_k \} \in$

Julien LESOUPLE

TéSA, CNES, M3 Systems, IRIT, ISAE

Navigation problem²

State vector:

Measurements for satellite i at time k

$$\rho_{i,k} = \underbrace{\|\mathbf{r}_{k} - \mathbf{r}_{i,k}\|_{2}}_{d_{i,k}} + b_{k} + \varepsilon_{i,k}$$
$$\dot{\rho}_{i,k} = (\mathbf{v}_{k} - \mathbf{v}_{i,k})^{T} \mathbf{u}_{i,k} + \dot{b}_{k} + e_{i,k}$$

 $\begin{array}{ll} \pmb{r_{k:}} & \text{receiver's position} & \pmb{r_{i,k:}} & \text{satellite's position} \\ \pmb{v_{k:}} & \text{receiver's velocity} & \pmb{v_{i,k:}} & \text{satellite's velocity} \\ \pmb{b_{k:}} & \text{receiver's clock bias} & \dot{\pmb{b}_{k:}} & \text{receiver's clock drift} \\ \pmb{\varepsilon_{i,k:}} & \text{pseudorange error} & \pmb{e_{i,k:}} & \text{pseudospeed error} \end{array}$

$\boldsymbol{\xi}_k = \{ \boldsymbol{r}_k, \boldsymbol{v}_k, \boldsymbol{b}_k, \boldsymbol{b}_k \} \in \mathbb{N}$

²Paul D. Groves. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems. 1st ed. Artech House Publishers, 2008.

Navigation problem²

State vector:

Measurements for satellite
$$i$$
 at time k

$$\rho_{i,k} = \underbrace{\|\mathbf{r}_{k} - \mathbf{r}_{i,k}\|_{2}}_{d_{i,k}} + b_{k} + \varepsilon_{i,k}$$
$$\dot{\rho}_{i,k} = (\mathbf{v}_{k} - \mathbf{v}_{i,k})^{T} \mathbf{u}_{i,k} + \dot{b}_{k} + e_{i,k}$$

 $\begin{array}{ll} \pmb{r_{k:}} & \text{receiver's position} & \pmb{r_{i,k:}} & \text{satellite's position} \\ \pmb{v_{k:}} & \text{receiver's velocity} & \pmb{v_{i,k:}} & \text{satellite's velocity} \\ \pmb{b_{k:}} & \text{receiver's clock bias} & \dot{\pmb{b}_{k:}} & \text{receiver's clock drift} \\ \pmb{\varepsilon_{i,k:}} & \text{pseudorange error} & \pmb{e_{i,k:}} & \text{pseudospeed error} \end{array}$

 $\boldsymbol{\xi}_{k} = \{\boldsymbol{r}_{k}, \boldsymbol{v}_{k}, b_{k}, \dot{b}_{k}\} \in \mathbb{R}^{8}$

²Paul D. Groves. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems. 1st ed. Artech House Publishers, 2008.

Thesis Defence

Julien LESOUPLE

TéSA, CNES, M3 Systems, IRIT, ISAE
GNSS Error Budget³

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 0000000
 0000000
 0000000
 0000000
 000000
 000000

GNSS Error Budget³

GNSS Error Budget³

GNSS Error Budget³

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 0000000
 0000000
 0000000
 000000
 000000

GNSS Error Budget³

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 0000000
 0000000
 0000000
 000000
 000000

GNSS Error Budget³

GNSS Error Budget³

GNSS Error Budget³

GNSS Error Budget³

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 0000000
 0000000
 0000000
 0000000
 000000

Multipath Mitigation⁴

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000

Multipath Mitigation⁴

Multipath Mitigation⁴

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 0000000
 0000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0

Multipath Mitigation⁴

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 0000000
 0000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0

Multipath Mitigation⁴

⁴ Mohinder S. Grewal, Lawrence R. Weill, and Angus P. Andrews. Global Positioning Systems, Inertial Navigation, and Integration. John Wiley & Sons, Inc., 2008.

TéSA, CNES, M3 Systems, IRIT, ISAE

Multipath Mitigation⁴

GNSS signals Code waveform

Antenna Geometry or spatial processing

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 0000000
 0000000
 0000000
 000000
 000000
 000000

Multipath Mitigation⁴

GNSS signals Code waveform

Antenna Geometry or spatial processing

Digital signal ML methods, DPE

Multipath Mitigation⁴

DLL

GNSS signals Code waveform

Antenna Geometry or spatial processing

Digital signal ML methods, DPE

Correlators Narrow correlator, Multi-correlator

Multipath Mitigation⁴

GNSS signals Code waveform

Antenna Geometry or spatial processing

Digital signal ML methods, DPE

Correlators Narrow correlator, Multi-correlator

Raw measurements Long term observation Statistical methods

Multipath Mitigation⁴

GNSS signals Code waveform

Antenna Geometry or spatial processing

Digital signal ML methods, DPE

Correlators Narrow correlator, Multi-correlator

Raw measurements Long term observation Statistical methods

Introduction State Space Model Sparse Estimation Bayesian Estimation Mixture Models Conclusions 0000000 0000000 0000000 0000000 0000000 000000 0000000

System equations

Measurements $z_k \in \mathbb{R}^{2s_k}$

Hypothesis: models for everything except multipath and noise^{5,6,7}

$$oldsymbol{z}_k = oldsymbol{h}_k(oldsymbol{\xi}_k) + oldsymbol{m}_k + oldsymbol{n}_k$$
 with

 $m{h}_k$ known and nonlinear $m{m}_k$ unknown $m{n}_k \sim \mathcal{N}(m{n}_k; m{0}, m{R}_k)$

Extended Kalman Filter (EKF) Filter considering a state propagation model (startard ros = 0) Fault Detection and Exclusion (FDE) Remove faulty satellites based on hypothesis tests on the residual

⁵T. Iwase, N. Suzuki, and Y. Watanabe. "Estimation and exclusion of multipath range error for robust positioning". In: GPS Solutions 17.1 (2012), pp. 53-62.

⁶A. Giremus, J.-Y. Tourneret, and V. Calmettes. "A Particle Filtering Approach for Joint Detection/Estimation of Multipath Effects on GPS Measurements". In: *IEEE Trans. Signal Process.* 55.4 (2007). pp. 1275–1285.

Introduction State Space Model Sparse Estimation Bayesian Estimation Mixture Models Conclusions 0000000 0000000 0000000 0000000 0000000 0000000

System equations

Measurements $z_k \in \mathbb{R}^{2s_k}$

Hypothesis: models for everything except multipath and noise^{5,6,7}

$$oldsymbol{z}_k = oldsymbol{h}_k(oldsymbol{\xi}_k) + oldsymbol{m}_k + oldsymbol{n}_k$$
 with

 $m{h}_k$ known and nonlinear $m{m}_k$ unknown $m{n}_k \sim \mathcal{N}(m{n}_k;m{0},m{R}_k)$

Extended Kalman Filter (EKF) Filter considering a state propagation model (startard to = 0) Fault Detection and Exclusion (FDE) Remove faulty satellites based on hypothesis tests on the residual

⁵T. Iwase, N. Suzuki, and Y. Watanabe. "Estimation and exclusion of multipath range error for robust positioning". In: GPS Solutions 17.1 (2012), pp. 53-62.

⁶A. Giremus, J.-Y. Tourneret, and V. Calmettes. "A Particle Filtering Approach for Joint Detection/Estimation of Multipath Effects on GPS Measurements". In: *IEEE Trans. Signal Process.* 55.4 (2007). pp. 1275–1285.

Introduction State Space Model Sparse Estimation Bayesian Estimation Mixture Models Conclusions 0000000 0000000 0000000 0000000 0000000 0000000

System equations

Measurements $z_k \in \mathbb{R}^{2s_k}$

Hypothesis: models for everything except multipath and noise^{5,6,7}

$$oldsymbol{z}_k = oldsymbol{h}_k(oldsymbol{\xi}_k) + oldsymbol{m}_k + oldsymbol{n}_k$$
 with

 $m{h}_k$ known and nonlinear $m{m}_k$ unknown $m{n}_k \sim \mathcal{N}(m{n}_k; m{0}, m{R}_k)$

Extended Kalman Filter (EKF) Filter considering a state propagation model (startard ros = 0) Fault Detection and Exclusion (FDE) Remove faulty satellites based on hypothesis tests on the residual

⁵T. Iwase, N. Suzuki, and Y. Watanabe. "Estimation and exclusion of multipath range error for robust positioning". In: GPS Solutions 17.1 (2012), pp. 53-62.

⁶A. Giremus, J.-Y. Tourneret, and V. Calmettes. "A Particle Filtering Approach for Joint Detection/Estimation of Multipath Effects on GPS Measurements". In: *IEEE Trans. Signal Process.* 55.4 (2007). pp. 1275–1285.

Introduction State Space Model Sparse Estimation Bayesian Estimation Mixture Models Conclusions 0000000 0000000 0000000 0000000 000000 000000 000000 000000 000000 000000 000000 0000000 0

System equations

Measurements $z_k \in \mathbb{R}^{2s_k}$

Hypothesis: models for everything except multipath and noise^{5,6,7}

$$oldsymbol{z}_k = oldsymbol{h}_k(oldsymbol{\xi}_k) + oldsymbol{m}_k + oldsymbol{n}_k$$
 with

 $m{h}_k$ known and nonlinear $m{m}_k$ unknown $m{n}_k \sim \mathcal{N}(m{n}_k; m{0}, m{R}_k)$

Extended Kalman Filter (EKF) Filter considering a state propagation model (standard: $m_k = 0$) Fault Detection and Exclusion (FDE) Remove faulty satellites based on hypothesis

⁵T. Iwase, N. Suzuki, and Y. Watanabe. "Estimation and exclusion of multipath range error for robust positioning". In: GPS Solutions 17.1 (2012), pp. 53-62.

⁶A. Giremus, J.-Y. Tourneret, and V. Calmettes. "A Particle Filtering Approach for Joint Detection/Estimation of Multipath Effects on GPS Measurements". In: *IEEE Trans. Signal Process.* 55.4 (2007). pp. 1275–1285.

System equations

Measurements $z_k \in \mathbb{R}^{2s_k}$

Hypothesis: models for everything except multipath and noise^{5,6,7}

$$oldsymbol{z}_k = oldsymbol{h}_k(oldsymbol{\xi}_k) + oldsymbol{m}_k + oldsymbol{n}_k$$
 with

 $m{h}_k$ known and nonlinear $m{m}_k$ unknown $m{n}_k \sim \mathcal{N}(m{n}_k; m{0}, m{R}_k)$

Extended Kalman Filter (EKF) Filter considering a state propagation model (standard: $m_k = 0$) Fault Detection and Exclusion (FDE) Remove faulty satellites based on hypothesis tests on the residuals

⁵T. Iwase, N. Suzuki, and Y. Watanabe. "Estimation and exclusion of multipath range error for robust positioning". In: GPS Solutions 17.1 (2012), pp. 53-62.

⁶A. Giremus, J.-Y. Tourneret, and V. Calmettes. "A Particle Filtering Approach for Joint Detection/Estimation of Multipath Effects on GPS Measurements". In: *IEEE Trans. Signal Process.* 55.4 (2007), pp. 1275–1285.

Introduction

State Space Model

Sparse Estimation

Bayesian Estimation

Mixture Models

Conclusions

Standard EKF

Standard EKF

Introduction

State Space Model 0000000

Sparse Estimation

Bayesian Estimation

Mixture Models

Conclusions

Fault Detection and Exclusion (FDE)

Thesis Defence

Julien LESOUPLE

TéSA, CNES, M3 Systems, IRIT, ISAE

Introduction

State Space Model

Sparse Estimation

Bayesian Estimation

Mixture Models

Conclusions 000000

Fault Detection and Exclusion (FDE)

ightarrow Sparse estimation to estimate MP biases on raw measurement:

Sparse Estimation

Julien LESOUPLE

TéSA, CNES, M3 Systems, IRIT, ISAE

^aE.J. Candès, M. B. Wakin, and S.P. Boyd. "Enhancing Sparsity by Reweighted or winimization In: Journal of Fourier Analysis and Applications 14 (2008), pp. 877–905.

Statistical Society, Series B 58 (1996), pp. 267–288.

⁹E.J. Candès, M. B. Wakin, and S.P. Boyd. "Enhancing Sparsity by Reweighted commimization". n: Journal of Fourier Analysis and Applications 14 (2008), pp. 877–905.

⁸R. Tibshirani. "Regression Shrinkage and Selection via the Lasso". In: Journal of the Royal Statistical Society, Series B 58 (1996), pp. 267–288.

⁹E.J. Candès, M. B. Wakin, and S.P. Boyd. "Enhancing Sparsity by Reweighted c1 winimization". n: Journal of Fourier Analysis and Applications 14 (2008), pp. 877–905.

data-fidelity term

Weighted- ℓ_1^9

$$\arg\min_{\boldsymbol{\theta}_k} \left\{ \frac{1}{2} \| \tilde{\boldsymbol{y}}_k - \tilde{\boldsymbol{\mathcal{H}}}_k \boldsymbol{\theta}_k \|_2^2 + \lambda_k \| \boldsymbol{\mathcal{W}}_k \boldsymbol{\theta}_k \|_1 \right\}$$

⁸R. Tibshirani. "Regression Shrinkage and Selection via the Lasso". In: Journal of the Royal Statistical Society, Series B 58 (1996), pp. 267-288.

⁹E.J. Candès, M. B. Wakin, and S.P. Boyd. "Enhancing Sparsity by Reweighted ℓ_1 Minimization". In: Journal of Fourier Analysis and Applications 14 (2008), pp. 877–905.

TéSA, CNES, M3 Systems, IRIT, ISAE

Application to Multipath Bias Estimation^{10,11}

Measurements

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Assumption

m_k is sparse

Weighted- ℓ_1

$\underset{\boldsymbol{x}_{k},\boldsymbol{m}_{k}}{\arg\min}\left\{\frac{1}{2}\|\boldsymbol{y}_{k}-\boldsymbol{H}_{k}\boldsymbol{x}_{k}-\boldsymbol{m}_{k}\|_{2}^{2}+\left|\boldsymbol{\lambda}_{k}\right|\|_{2}^{2}\right\}$

¹⁰ Julien Lesouple, Thierry Robert, Mohamed Sahmoudi, Jean-Yves Tourneret, and Willy Vigneau. "Multipath Mitigation for GNSS Positioning in Urban Environment Using Sparse Estimation". In: IEEE Trans. Intell. Transp. Syst. (2019).

¹¹ Julien Lesouple, Jean-Yves Tourneret, Willy Vigneau, Mohamed Sahmoudi, and François-Xavier Marmet. "Traitement des Multitrajets GNSS par Méthode Parcimonieuse". Pat. FR3066027A1. 2017-05-03.
 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 0000000
 0000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000
 0000000
 00000000
 0000000
 0000000
 00000000
 0000000
 0000000

Application to Multipath Bias Estimation^{10,11}

Measurements

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Assumption

m_k is sparse

Weighted- ℓ_1

$\underset{\boldsymbol{x}_{k},\boldsymbol{m}_{k}}{\arg\min}\left\{\frac{1}{2}\|\boldsymbol{y}_{k}-\boldsymbol{H}_{k}\boldsymbol{x}_{k}-\boldsymbol{m}_{k}\|_{2}^{2}+\boldsymbol{\lambda}_{k}\|\right\}$

¹⁰ Julien Lesouple, Thierry Robert, Mohamed Sahmoudi, Jean-Yves Tourneret, and Willy Vigneau. "Multipath Mitigation for GNSS Positioning in Urban Environment Using Sparse Estimation". In: IEEE Trans. Intell. Transp. Syst. (2019).

¹¹ Julien Lesouple, Jean-Yves Tourneret, Willy Vigneau, Mohamed Sahmoudi, and François-Xavier Marmet. "Traitement des Multitrajets GNSS par Méthode Parcimonieuse". Pat. FR3066027A1. 2017-05-03. IntroductionState Space ModelSparse EstimationBayesian EstimationMixture ModelsConclusions000

Application to Multipath Bias Estimation^{10,11}

Measurements

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Assumption

m_k is sparse

Weighted- ℓ_1

$$\arg\min_{\boldsymbol{x}_k,\boldsymbol{m}_k} \left\{ \frac{1}{2} \|\boldsymbol{y}_k - \boldsymbol{H}_k \boldsymbol{x}_k - \boldsymbol{m}_k \|_2^2 + \lambda_k \|\boldsymbol{W}_k \boldsymbol{m}_k \|_1 \right\}$$

¹⁰ Julien Lesouple, Thierry Robert, Mohamed Sahmoudi, Jean-Yves Tourneret, and Willy Vigneau. "Multipath Mitigation for GNSS Positioning in Urban Environment Using Sparse Estimation". In: IEEE Trans. Intell. Transp. Syst. (2019).

¹¹ Julien Lesouple, Jean-Yves Tourneret, Willy Vigneau, Mohamed Sahmoudi, and François-Xavier Marmet. "Traitement des Multitrajets GNSS par Méthode Parcimonieuse". Pat. FR3066027A1. 2017-05-03.

Weights for Navigation

¹² Eugenio Realini and Mirko Reguzzoni. "goGPS: Open Source Software for Enhancing the Accuracy of Low-Cost Receivers by Single-Frequency Relative Kinematic Positioning". In: *Measurement Science and Technology* 24.11 (2013).

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000

Additional Solutions

Avoid flickering in the estimation by temporal smoothing¹³

Total variation (Fused LASSO)¹

 $\arg\min_{\boldsymbol{\theta}} \frac{1}{2} \| \tilde{\boldsymbol{y}}_k - \tilde{\boldsymbol{H}}_k \boldsymbol{\theta}_k \|_2^2 + \lambda_k \| \boldsymbol{\theta}_k \|_1 + \mu \| \boldsymbol{\theta}_k - \hat{\boldsymbol{\theta}}_{k-1} \|_1$

Robust estimation for the noise covariance matrix¹

Danish method¹⁶

¹³ Julien Lesouple, Franck Barbiero, Frédéric Faurie, Mohamed Sahmoudi, and Jean-Yves Tourneret. "Smooth Bias Estimation for Multipath Mitigation Using Sparse Estimation". In: Proc. IEEE Int. Conf. on Inf. Fusion (FUSION). Cambridge, UK, 2018, pp. 1684–1690.

¹⁶ Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith Kateni, "Charsity and Smoothness via the Fused Lasso". In: Journal of the Royal Statistical Society Series 9 (2011) pp. 91–108.

¹⁵ Julien Lesouple, Franck Barbiero, Frédéric Faurie, Mohamed Sahmoudi, and Jean-Yee. Tormeret, "Robust Covariance Matrix Estimation and Sparse Bias Estimation for the Mitigation" (in: Proc of the 31st International Technical Meeting of The Satellite Division of the Institute of Satellite (ION GNSS-2018). Miami, FL, 2018, pp. 1684-1690.

¹⁰H. Kuusniemi, A. Wieser, G. Lachapelle, and J. Takala, "User-Level Reliability monitoring in Urban Personal Satellite-Navigation". In: IEEE Trans. Aerosp. Electron. Syst. 43.4 (2007), pp. 1305–1318.

Additional Solutions

Avoid flickering in the estimation by temporal smoothing¹³

Total variation (Fused LASSO)¹⁴

$$\arg\min_{\boldsymbol{\theta}_k} \frac{1}{2} \| \tilde{\boldsymbol{y}}_k - \tilde{\boldsymbol{H}}_k \boldsymbol{\theta}_k \|_2^2 + \lambda_k \| \boldsymbol{\theta}_k \|_1 + \mu \| \boldsymbol{\theta}_k - \hat{\boldsymbol{\theta}}_{k-1} \|_1$$

Robust estimation for the noise covariance matrix¹

Danish method¹⁶

¹³ Julien Lesouple, Franck Barbiero, Frédéric Faurie, Mohamed Sahmoudi, and Jean-Yves Tourneret. "Smooth Bias Estimation for Multipath Mitigation Using Sparse Estimation". In: Proc. IEEE Int. Conf. on Inf. Fusion (FUSION). Cambridge, UK, 2018, pp. 1684–1690.

¹⁴ Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith Knight. "Sparsity and Smoothness via the Fused Lasso". In: Journal of the Royal Statistical Society Series B (2005), pp. 91–108.

¹⁹ Julien Lesouple, Franck, Barbiero, Frédéric Faurie, Mohamed Sahmoudi and Jean-Yees Tormeret, "Robust Covariance Matrix Estimation and Sparse Bias Estimation for the International Technical Meeting of The Satellite Division of the Institute, station, 10N GNS5+2018). Mimmi, FL, 2018, pp. 1684–1690.

¹⁶H. Kuusniemi, A. Wieser, G. Lachapelle, and J. Takala, "User-Level Reliability monitoring in Urban Personal Satellite-Navigation". In: IEEE Trans. Aerosp. Electron. Syst. 43.4 (2007), pp. 1305–1318.

Additional Solutions

Avoid flickering in the estimation by temporal smoothing¹³

Total variation (Fused LASSO)¹⁴

$$\arg\min_{\boldsymbol{\theta}_k} \frac{1}{2} \| \tilde{\boldsymbol{y}}_k - \tilde{\boldsymbol{H}}_k \boldsymbol{\theta}_k \|_2^2 + \lambda_k \| \boldsymbol{\theta}_k \|_1 + \mu \| \boldsymbol{\theta}_k - \hat{\boldsymbol{\theta}}_{k-1} \|_1$$

Robust estimation for the noise covariance matrix¹⁵

Danish method¹⁶

¹³ Julien Lesouple, Franck Barbiero, Frédéric Faurie, Mohamed Sahmoudi, and Jean-Yves Tourneret. "Smooth Bias Estimation for Multipath Mitigation Using Sparse Estimation". In: Proc. IEEE Int. Conf. on Inf. Fusion (FUSION). Cambridge, UK, 2018, pp. 1684–1690.

¹⁴ Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith Knight. "Sparsity and Smoothness via the Fused Lasso". In: Journal of the Royal Statistical Society Series B (2005), pp. 91–108.

¹⁵ Julien Lesouple, Franck Barbiero, Frédéric Faurie, Mohamed Sahmoudi, and Jean-Yves Tourneret. "Robust Covariance Matrix Estimation and Sparse Bias Estimation for Multipath Mitigation". In: Proc. of the 31st International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2018). Miami, FL, 2018, pp. 1684-1690.

¹⁶H. Kuusniemi, A. Wieser, G. Lachapelle, and J. Takala, "User-Level Reliability monitoring in Urban Personal Satellite-Navigation". In: IEEE Trans. Aerosp. Electron. Syst. 43.4 (2007), pp. 1305–1318.

Additional Solutions

Avoid flickering in the estimation by temporal smoothing¹³

Total variation (Fused LASSO)¹⁴

$$\arg\min_{\boldsymbol{\theta}_k} \frac{1}{2} \| \tilde{\boldsymbol{y}}_k - \tilde{\boldsymbol{H}}_k \boldsymbol{\theta}_k \|_2^2 + \lambda_k \| \boldsymbol{\theta}_k \|_1 + \mu \| \boldsymbol{\theta}_k - \hat{\boldsymbol{\theta}}_{k-1} \|_1$$

Robust estimation for the noise covariance matrix¹⁵

Danish method¹⁶

¹³ Julien Lesouple, Franck Barbiero, Frédéric Faurie, Mohamed Sahmoudi, and Jean-Yves Tourneret. "Smooth Bias Estimation for Multipath Mitigation Using Sparse Estimation". In: Proc. IEEE Int. Conf. on Inf. Fusion (FUSION). Cambridge, UK, 2018, pp. 1684–1690.

¹⁴ Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith Knight. "Sparsity and Smoothness via the Fused Lasso". In: Journal of the Royal Statistical Society Series B (2005), pp. 91–108.

¹⁵ Julien Lesouple, Franck Barbiero, Frédéric Faurie, Mohamed Sahmoudi, and Jean-Yves Tourneret. "Robust Covariance Matrix Estimation and Sparse Bias Estimation for Multipath Mitigation". In: Proc. of the 31st International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2018). Miami, FL, 2018, pp. 1684-1690.

¹⁶H. Kuusniemi, A. Wieser, G. Lachapelle, and J. Takala. "User-Level Reliability Monitoring in Urban Personal Satellite-Navigation". In: IEEE Trans. Aerosp. Electron. Syst. 43.4 (2007), pp. 1305–1318.

Introduction	State Space Model	Sparse Estimation	Bayesian Estimation	Mixture Models	Conclusions
0000000	000000	0000000000000000	0000000	000000	000000

Proposed Strategies

Name	MP bias	Noise covariance	
EKF	$m_k = 0$	$\begin{bmatrix} \sigma_p^2 I_{s_k} & 0 \\ 0 & \sigma_r^2 I_{s_k} \end{bmatrix}$	
Weighted LASSO	$Weighted-\ell_1$	$\begin{bmatrix} \sigma_p^2 I_{s_k} & 0 \\ 0 & \sigma_r^2 I_{s_k} \end{bmatrix}$	
Fused LASSO	Weighted- ℓ_1 and smoothing	$\begin{bmatrix} \sigma_p^2 I_{s_k} & 0 \\ 0 & \sigma_r^2 I_{s_k} \end{bmatrix}$	
Danish	$oldsymbol{m}_k = oldsymbol{0}$	Danish method	
Weighted LASSO +Danish	$Weighted\text{-}\ell_1$	Danish method	
Fused LASSO +Danish	Weighted- ℓ_1 and smoothing	Danish method	

Experimental setup

 Ground truth: Novatel SPAN (GPS receiver Propak-V3 + inertial measurements unit IMAR)

Measurements: Ublox AEK-4T

Introduction

State Space Model

Sparse Estimation

Bayesian Estimation

Mixture Models 000000 Conclusions

Trajectory

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 0000000
 0000000
 0000000
 000000
 000000
 000000

Local Results

Few MP

Thesis Defence

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 0000000
 0000000
 0000000
 0000000
 000000
 000000

Local Results

Few MP

Introduction State Space Model Sparse Estimation Bayesian Estimation Mixture Models Conclusions

Local Results

More MP

Julien LESOUPLE

Introduction State Space Model Sparse Estimation Bayesian Estimation Mixture Models Conclusions

Local Results

More MP

Local Results

More robust methods

Thesis Defence

Julien LESOUPLE

Local Results

More robust methods

Julien LESOUPLE

Introduction

State Space Model

Sparse Estimation

Bayesian Estimation

Mixture Models

Conclusions

Global Results: Planar Error

Introduction

State Space Model

Sparse Estimation

Bayesian Estimation

Mixture Models

Conclusions 000000

Global Results: Altitude Error

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 0000000
 0000000
 0000000
 000000
 000000

Tuning the hyperparameter

$$\arg\min_{\boldsymbol{x}_k,\boldsymbol{m}_k} \left\{ \frac{1}{2} \|\boldsymbol{y}_k - \boldsymbol{H}_k \boldsymbol{x}_k - \boldsymbol{m}_k \|_2^2 + \lambda_k \|\boldsymbol{W}_k \boldsymbol{m}_k \|_1 \right\}$$

Cross-validation

Tuning the hyperparameter

Bayesian Estimation

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 0000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 00

Bayesian Framework

Rewriting the problem

$$\arg \min_{\boldsymbol{x}_{k}, \boldsymbol{m}_{k}} \frac{1}{2} \|\boldsymbol{y}_{k} - \boldsymbol{H}_{k} \boldsymbol{x}_{k} - \boldsymbol{m}_{k}\|_{2}^{2} + \lambda_{k} \|\boldsymbol{W}_{k} \boldsymbol{m}_{k}\|_{1}$$

$$\Leftrightarrow \arg \max_{\boldsymbol{x}_{k}, \boldsymbol{m}_{k}} \exp\left(-\frac{1}{2} \|\boldsymbol{y}_{k} - \boldsymbol{H}_{k} \boldsymbol{x}_{k} - \boldsymbol{m}_{k}\|_{2}^{2}\right) \exp\left(-\lambda_{k} \|\boldsymbol{W}_{k} \boldsymbol{m}_{k}\|_{1}\right)$$

$$\Leftrightarrow \operatorname{aussian} \operatorname{likelihood} \boldsymbol{y}_{k} |\boldsymbol{x}_{k}, \boldsymbol{m}_{k}$$

$$\operatorname{Laplacian prior for } \boldsymbol{m}_{k}$$
ssing
$$\operatorname{Prior for } \boldsymbol{x}_{k} \text{ (assuming independence betwork } \boldsymbol{m}_{k} \text{ and } \boldsymbol{m}$$

• Hyperprior for λ_k

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 0000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000

Bayesian Framework

Rewriting the problem

$$\arg \min_{x_k, m_k} \frac{1}{2} \| y_k - H_k x_k - m_k \|_2^2 + \lambda_k \| W_k m_k \|_1$$

$$\Leftrightarrow \arg \max_{x_k, m_k} \underbrace{\exp\left(-\frac{1}{2} \| y_k - H_k x_k - m_k \|_2^2\right)}_{\propto p(y_k | x_k, m_k)} \underbrace{\exp\left(-\lambda_k \| W_k m_k \|_1\right)}_{\propto p(m_k)}$$

$$\Rightarrow Gaussian likelihood y_k | x_k, m_k$$

$$\Rightarrow Laplacian prior for m_k$$

$$\Rightarrow Prior for x_k (assuming independence between m_k and m_k)$$

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 0000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 00

Bayesian Framework

Rewriting the problem

$$\arg \min_{\boldsymbol{x}_{k}, \boldsymbol{m}_{k}} \frac{1}{2} \|\boldsymbol{y}_{k} - \boldsymbol{H}_{k}\boldsymbol{x}_{k} - \boldsymbol{m}_{k}\|_{2}^{2} + \lambda_{k} \|\boldsymbol{W}_{k}\boldsymbol{m}_{k}\|_{1}$$

$$\Leftrightarrow \arg \max_{\boldsymbol{x}_{k}, \boldsymbol{m}_{k}} \underbrace{\exp\left(-\frac{1}{2} \|\boldsymbol{y}_{k} - \boldsymbol{H}_{k}\boldsymbol{x}_{k} - \boldsymbol{m}_{k}\|_{2}^{2}\right)}_{\propto p(\boldsymbol{y}_{k}|\boldsymbol{x}_{k}, \boldsymbol{m}_{k})} \underbrace{\exp\left(-\lambda_{k} \|\boldsymbol{W}_{k}\boldsymbol{m}_{k}\|_{1}\right)}_{\propto p(\boldsymbol{m}_{k})}$$

$$= \text{Gaussian likelihood } \boldsymbol{y}_{k}|\boldsymbol{x}_{k}, \boldsymbol{m}_{k}$$

$$= \text{Laplacian prior for } \boldsymbol{m}_{k}$$

Missing

- ▶ Prior for x_k (assuming independence between m_k and m_k)
- Hyperprior for λ_k

Hierarchical Bayesian Model

Gaussian likelihood for y_k (from model)

 $oldsymbol{y}_k | oldsymbol{x}_k, oldsymbol{m}_k \sim \mathcal{N}(oldsymbol{y}_k; oldsymbol{H}_k oldsymbol{x}_k + oldsymbol{m}_k, oldsymbol{R}_k)$

Laplacian prior for m_k (from model)

Gaussian prior for x_k (from Kalman filter theory)

 $oldsymbol{x}_k \sim \mathcal{N}(oldsymbol{x}_k; oldsymbol{0}, oldsymbol{P}_{k|k-1})$

Jeffreys prior for λ_k^2 (non-informative prior)

Introduction State Space Model Sparse Estimation Bayesian Estimation Mixture Models

Hierarchical Bayesian Model

Gaussian likelihood for y_k (from model)

$$oldsymbol{y}_k | oldsymbol{x}_k, oldsymbol{m}_k \sim \mathcal{N}(oldsymbol{y}_k; oldsymbol{H}_k oldsymbol{x}_k + oldsymbol{m}_k, oldsymbol{R}_k)$$

Laplacian prior for m_k (from model)

$$m_{i,k} \sim \mathcal{L}\left(m_{i,k}; 0, \frac{1}{\lambda_k w_{i,k}}\right)$$

Gaussian prior for x_k (from Kalman filter theory-

$$oldsymbol{x}_k \sim \mathcal{N}(oldsymbol{x}_k; oldsymbol{0}, oldsymbol{P}_{k|k-1})$$

Jeffreys prior for λ_k^2 (non-informative prior)

Conclusions

Hierarchical Bayesian Model

State Space Model

Gaussian likelihood for y_k (from model)

Sparse Estimation

$$oldsymbol{y}_k | oldsymbol{x}_k, oldsymbol{m}_k \sim \mathcal{N}(oldsymbol{y}_k; oldsymbol{H}_k oldsymbol{x}_k + oldsymbol{m}_k, oldsymbol{R}_k)$$

Bayesian Estimation

0000000

Mixture Models

Conclusions

Laplacian prior for m_k (from model)

$$m_{i,k} \sim \mathcal{L}\left(m_{i,k}; 0, \frac{1}{\lambda_k w_{i,k}}\right)$$

Gaussian prior for x_k (from Kalman filter theory)

$$oldsymbol{x}_k \sim \mathcal{N}(oldsymbol{x}_k; oldsymbol{0}, oldsymbol{P}_{k|k-1})$$

Jeffreys prior for λ_k^2 (non-informative prior)

Introduction

Hierarchical Bayesian Model

State Space Model

Gaussian likelihood for y_k (from model)

$$oldsymbol{y}_k | oldsymbol{x}_k, oldsymbol{m}_k \sim \mathcal{N}(oldsymbol{y}_k;oldsymbol{H}_koldsymbol{x}_k + oldsymbol{m}_k,oldsymbol{R}_k)$$

Bayesian Estimation

0000000

Mixture Models

Conclusions

Laplacian prior for m_k (from model)

$$m_{i,k} \sim \mathcal{L}\left(m_{i,k}; 0, \frac{1}{\lambda_k w_{i,k}}\right)$$

Gaussian prior for x_k (from Kalman filter theory)

Sparse Estimation

$$oldsymbol{x}_k \sim \mathcal{N}(oldsymbol{x}_k; oldsymbol{0}, oldsymbol{P}_{k|k-1})$$

Jeffreys prior for λ_k^2 (non-informative prior)

$$\lambda_k^2 \sim p(\lambda_k^2) \propto rac{1}{\lambda_k^2}$$

Introduction

¹⁷ Trevor Park and George Casella. "The Bayesian Lasso". In: Journal of the American Statistical Association 103 (2008), pp. 681-686.

Julien LESOUPLE

TéSA, CNES, M3 Systems, IRIT, ISAE

¹⁷ Trevor Park and George Casella. "The Bayesian Lasso". In: Journal of the American Statistical Association 103 (2008), pp. 681-686.

MCMC Methods

Markov Chain Monte Carlo¹⁸ methods draw samples $\theta^{(1)}, \theta^{(2)}, \ldots$ from posterior distribution of θ

- posterior distribution is known up to a multiplicative constant
- samples $y^{(t)}$ can be drawn from a proposal distribution
- set $\theta^{(t)} = y^{(t)}$ with an appropriate acceptance probability

Gibbs sampling

- proposal distributions are the conditional distribution
- acceptance probability is 1

¹⁸Christin Robert and George Casella. Monte Carlo Statistical Methods. Springer-Verlag New York, 2004.

Introduction State Space Model Sparse Estimation Bayesian Estimation Mixture Models Conclusions

MCMC Methods

Markov Chain Monte Carlo¹⁸ methods draw samples $\theta^{(1)}, \theta^{(2)}, \ldots$ from posterior distribution of θ

- posterior distribution is known up to a multiplicative constant
- samples $y^{(t)}$ can be drawn from a proposal distribution
- set $\theta^{(t)} = y^{(t)}$ with an appropriate acceptance probability

Gibbs sampling

- proposal distributions are the conditional distributions
- acceptance probability is 1

¹⁸Christin Robert and George Casella. Monte Carlo Statistical Methods. Springer-Verlag New York, 2004.

Multipath Detection/Estimation: Synthetic Data

Simulation scenario

- 200 Monte Carlo iterations
- States and measurements generated by system equations
- Artificial (controlled) dynamic MP biases

Gibbs sampler

- 1000 iterations with a 100 burn-in period
 - Convergence assessment¹⁹: PSRF<1.2
 - MMSE estimators: averages of generated

¹⁹Stephen P. Brooks and Andrew Gelman. "General Methods for Monitoring Convergence of Iterative Simulations". In: Journal of Computational and Graphical Statistics 7.4 (1998), pp. 434-455.

Multipath Detection/Estimation: Synthetic Data

Simulation scenario

- 200 Monte Carlo iterations
- States and measurements generated by system equations
- Artificial (controlled) dynamic MP biases

Gibbs sampler

- 1000 iterations with a 100 burn-in period
- Convergence assessment¹⁹: PSRF<1.2</p>
- MMSE estimators: averages of generated samples

¹⁹Stephen P. Brooks and Andrew Gelman. "General Methods for Monitoring Convergence of Iterative Simulations". In: Journal of Computational and Graphical Statistics 7.4 (1998), pp. 434-455.

Thesis Defence

Julien LESOUPLE

TéSA, CNES, M3 Systems, IRIT, ISAE

Thesis Defence

Julien LESOUPLE

TéSA, CNES, M3 Systems, IRIT, ISAE

Multipath Detection/Estimation: Real Data

Thesis Defence

Julien LESOUPLE

Mixture Models

Introduction State Space Model Sparse Estimation Bayesian Estimation Mixture Models Conclusions 0000000 0000000 0000000 0000000 000000 000000 000000 000000 000000 000000 000000 0000000 0000000

Main idea

Generalized problem

$$oldsymbol{z}_k = oldsymbol{h}_k(oldsymbol{\xi}_k) + \underbrace{oldsymbol{m}_k + oldsymbol{n}_k}_{oldsymbol{
u}_k} \quad \Rightarrow \quad oldsymbol{m}_k \sim \mathcal{L}, \quad oldsymbol{n}_k \sim \mathcal{N} \ oldsymbol{
u}_k \sim \mathcal{D}$$

Many distributions have been proposed

- Conditional Gaussian²⁰
- ► Gaussian mixtures²¹

Dirichlet process mixtures²²

⁴⁰ S. Tay and J. Marais. "Weighting models for GPS Pseudorange discussions for the transportat in urban canyons". In: Proc. of the 6th European Workshop on GN Signals and Signals and Signals and Signals and Signals. Section, Munich, Germany, 2013.

²¹ N. Viandier, D. F. Nahimana, J. Marais, and E. Duflos, "GNSS "Supersonance Enhancement Urban Environment Based on Pseudo-range Error Model". In Proc. Symp. State SEE/ O Position Location and Navigation. Monterey, CA, 2008, pp. 377–382.

²²A. Rabaoui, N. Viandier, E. Duflos, J. Marais, and P. Vanheeghe. "Diric. Cess M. cures for Density Estimation in Dynamic Nonlinear Modeling: Application to GPS Positioning in Orban Canyons", in: IEEE Trans. Signal Process '60.4 (2012), pp. 1638–1655.
 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 0000000
 0000000
 0000000
 000000
 000000

Main idea

Generalized problem

$$\mathbf{z}_k = \mathbf{h}_k(\boldsymbol{\xi}_k) + \underbrace{\mathbf{m}_k + \mathbf{n}_k}_{oldsymbol{
u}_k} \quad \Rightarrow \quad \mathbf{m}_k \sim \mathcal{L}, \quad \mathbf{n}_k \sim \mathcal{N}, \quad \mathbf{n}_k \sim \mathcal{N}$$

Many distributions have been proposed

- Conditional Gaussian²⁰
- ▶ Gaussian mixtures²¹

Dirichlet process mixtures²²

²⁰S. Tay and J. Marais. "Weighting models for GPS Pseudorange observations for land transportation in urban canyons". In: Proc. of the 6th European Workshop on GNSS Signals and Signal Processing. Munich, Germany, 2013.

²¹ N. Viandier, D. F. Nahimana, J. Marais, and E. Duflos. "GNSS Performance Enhancement in Urban Environment Based on Pseudo-range Error Model". In: Proc. Symp. of the IEEE/ION Position, Location and Navigation. Monterey, CA, 2008, pp. 377–382.

²² A. Rabaoui, N. Viandier, E. Duflos, J. Marais, and P. Vanheeghe. "Dirichlet Process Mixtures for Density Estimation in Dynamic Nonlinear Modeling: Application to GPS Positioning in Urban Canyons". In: IEEE Trans. Signal Process. 60.4 (2012), pp. 1638–1655.

Gaussian Mixtures

Model

$$n_{i,k} \sim \sum_{\ell=1}^{M} \alpha_{i,\ell} \mathcal{N}(n_{i,k}; \mu_{i,\ell}, \sigma_{i,\ell}^2) \Leftrightarrow \begin{cases} P(c_{i,k} = \ell) = \alpha_{i,\ell} \\ n_{i,k} | c_{i,k} = \ell \sim \mathcal{N}(n_{i,k}; \mu_{i,\ell}, \sigma_{i,\ell}^2) \end{cases}$$

Estimation

Expectation Maximization method²³

²³A. P. Dempster, N. M. Laird, and D. B. Rubin. "Maximum Likelihood from Incomplete Data via the EM Algorithm". In: Journal of the Royal Statistical Society, Series B (Methodological) 39.1 (1977), pp. 1–38.

Gaussian Mixtures

Model

$$n_{i,k} \sim \sum_{\ell=1}^{M} \alpha_{i,\ell} \mathcal{N}(n_{i,k}; \mu_{i,\ell}, \sigma_{i,\ell}^2) \Leftrightarrow \begin{cases} P(c_{i,k} = \ell) = \alpha_{i,\ell} \\ n_{i,k} | c_{i,k} = \ell \sim \mathcal{N}(n_{i,k}; \mu_{i,\ell}, \sigma_{i,\ell}^2) \end{cases}$$

Estimation

Expectation Maximization method²³

²³A. P. Dempster, N. M. Laird, and D. B. Rubin. "Maximum Likelihood from Incomplete Data via the EM Algorithm". In: Journal of the Royal Statistical Society, Series B (Methodological) 39.1 (1977), pp. 1–38.
 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 00000000
 0000000
 0000000
 000000
 000000

Hidden Markov Model

Principle

► Gaussian mixtures with dependance on previous state k - 1 Model

$$n_{i,k} \sim \sum_{j=1}^{M} \alpha_{i,j} \mathcal{N}(n_{i,k}; \mu_{i,j}, \sigma_{i,j}^2) \Leftrightarrow \begin{cases} P(c_{i,k} = \ell | c_{i,k-1} = m) = (\mathbf{A}_i)_{m,\ell} \\ P(c_{i,0} = \ell) = (\mathbf{\Pi}_i)_{\ell} \\ n_{i,k} | c_{i,k} = \ell \sim \mathcal{N}(n_{i,k}; \mu_{i,\ell}, \sigma_{i,\ell}^2) \end{cases}$$

Estimation

Baum-Welch method²⁴

²⁴Lawrence R. Rabiner. "A Tutorial on Hidden Markov Models and Selected Applications in Speech recognition". In: *Proceedings of the IEEE* 77.2 (1989), pp. 257–286.

I ntroduction 0000000	State Space Model	Sparse Estimation	Bayesian Estimation	Mixture Models 000●00	Conclusions 000000

Filters

Gaussian Mixtures

 Gaussian sum filter²⁵: bank of Kalman filters for all modes of the mixtures

нмм

Interacting Multiple Model²⁶: bank of Kalman filters for all modes of the mixtures using approximations

Computing limitations

- ► Huge number of modes: M^{2s_k}
- Limitation to a maximum of two mode changes

²⁶Yaakov Bar-Shalom, Subhash Challa, and Henk A. P. Blom. "IMM Estimator Versus Optimal Estimator for Hybrid Systems". In: IEEE Trans. Aerosp. Electron. Syst. 41.3 (2005), pp. 986–991.

²⁵ Daniel L. Alspach and Harold W. Sorenson. "Nonlinear Bayesian Estimation Using Gaussian Sum Approximations". In: IEEE Trans. Autom. Contr. 17.4 (1972), pp. 439–448.

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 0000000
 0000000
 0000000
 000000
 000000

Some Experiments

Julien LESOUPLE

TéSA, CNES, M3 Systems, IRIT, ISAE

 Introduction
 State Space Model
 Sparse Estimation
 Bayesian Estimation
 Mixture Models
 Conclusions

 0000000
 0000000
 0000000
 0000000
 000000
 000000

Some Experiments

Julien LESOUPLE

TéSA, CNES, M3 Systems, IRIT, ISAE

Cumulative Distribution Functions

Conclusions and Future Works

Introduction	State Space Model	Sparse Estimation	Bayesian Estimation	Mixture Models	Conclusions
0000000	000000	0000000000000	0000000	000000	00000

Sparse Estimation

Advantages

- Joint detection/estimation of MP bias
- Only need raw measurements (RINEX) from any receiver
- Real-time formulation
- Can be combined to robust estimation

Drawback

Hyperparameter tuning

Future work

- Other weighting matrices
- Other hyperparameter estimation: time-dependent, DOP-dependent, ...
- Fusion with other sensors/signals: multi constellation, multi frequency, vision, 5G, ...

IntroductionState Space ModelSparse EstimationBayesian EstimationMixture ModelsConclusions00

Bayesian Estimation

Advantages

- No hyperparameter tuning
- Measures of uncertainties

Drawback

Computationally intensive

Future work

- Assign different priors to multipath biases
- More informative priors for the hyperparameter
- Develop more efficient algorithms: SMC methods

Introduction	State Space Model	Sparse Estimation	Bayesian Estimation	Mixture Models	Conclusions
0000000	000000	0000000000000	0000000	000000	000000

Mixture Models

Advantages

- More flexibility
- Straightforward computations in the Gaussian case

Drawbacks

- Full solution computationally intensive: reduce the number of births and deaths
- Prior learning of the noise distribution

Future work

- Online estimation of the mixtures
- Optimize the mode configurations: MCMC, particular filters
- Combine sparse estimation and Gaussian mixtures

Precise Point Positioning in urban environment

- Multi-frequency signals: instantaneous ambiguity resolution²⁷
- Use of sparse estimation to detect cycle slips

²⁷D. Laurichesse and S. Banville. "Innovation: Instantaneous Centimeter-Level Multi-Frequency Precise Point Positioning". In: GPS World (2018).

Sparsity in GNSS

Software Define Radio

- Versatile device
- Implement sparse estimation earlier in the receiver

Sparsity in GNSS

Collaborative Positioning

- Increasing number of IoT sensors
- Stock and share data: cloud²⁸

Integrity

- Develop integrity criteria based on sparse estimation
- Spoofing and jamming detection/correction
- Authentication of the signals

²⁸V. Lucas-Sabola, G. Seco-Granados, J. A. López-Salcedo, and J. A. Garciá-Molina. "GNSS IoT Positioning: From Conventional Sensors to a Cloud-Based Solution". In: *Inside GNSS* (2018).
Thanks for your attention!

Back-up

Increasingly various GPS applications **GPS** Signal Extended Kalman Filter Solving the Sparse Bias Problem Discontinuities in Estimation The ℓ_0 Problem Comparison with reweighted- ℓ_1 Wavelet decomposition **Bayesian LASSO** Hierarchical Bayesian Model with MP indicator Multipath Detection / Estimation: Hyperparameter evolution Gaussian Mixtures

Increasingly various GPS applications

A. Brzezinski et al., "Geodetic and Geodynamic Studies at Department of Geodesy and Geodetic Astronomy Wut", in *Reports on Geodesy and Geoinformatics* vol. 100, March 2016, pp.165-200

Marielle Mayo, "GNSS-R Signaux réfléchis", in *Géomètre* n° 2123, March 2015, pp.46-49

GPS Signal

Extended Kalman Filter

State propagation $\boldsymbol{\xi}_k \in \mathbb{R}^8$ Hypothesis: random walk

$$oldsymbol{\xi}_k = oldsymbol{F}_k oldsymbol{\xi}_{k-1} + oldsymbol{u}_k$$
 with

 $m{F}_k$ known $m{u}_k \sim \mathcal{N}(m{n}_k;m{0},m{Q}_k)$

EKF= Kalman Filter + Linearization Kalman predictions

$$\hat{oldsymbol{\xi}}_{k|k-1} = oldsymbol{F}_k \hat{oldsymbol{\xi}}_{k-1|k-1} ext{ } o ext{Linearization point}
onumber \ oldsymbol{P}_{k|k-1} = oldsymbol{F}_k oldsymbol{P}_{k-1|k-1} oldsymbol{F}_k + oldsymbol{Q}_k$$

Kalman updates

$$\begin{split} \boldsymbol{K}_{k} &= \boldsymbol{P}_{k|k-1} \boldsymbol{H}_{k}^{\mathsf{T}} (\boldsymbol{H}_{k} \boldsymbol{P}_{k|k-1} \boldsymbol{H}_{k}^{\mathsf{T}} + \boldsymbol{R}_{k}) \\ \hat{\boldsymbol{\xi}}_{k} &= \hat{\boldsymbol{\xi}}_{k|k-1} + \boldsymbol{K}_{k} (\boldsymbol{z}_{k} - \boldsymbol{h}_{k} (\hat{\boldsymbol{\xi}}_{k|k-1}) - \boldsymbol{m}_{k}) \\ \boldsymbol{P}_{k|k} &= (\boldsymbol{I} - \boldsymbol{K}_{k} \boldsymbol{H}_{k}) \boldsymbol{P}_{k|k-1} \end{split}$$

Thesis Defence

Tuning the EKF

State Evolution

$$F_{k-1} = \begin{bmatrix} I_4 & \Delta t_k \\ 0 & I_4 \end{bmatrix}$$

State Covariance

$$\boldsymbol{Q}_{k-1} = \begin{bmatrix} S_a \frac{\Delta t_{k-1}^3}{3} I_3 & \boldsymbol{0}_{3 \times 1} & S_a \frac{\Delta t_{k-1}^2}{2} I_3 & \boldsymbol{0}_{3 \times 1} \\ \boldsymbol{0}_{1 \times 3} & c^2 \left(S_b \Delta t_{k-1} + S_d \frac{\Delta t_{k-1}^3}{3} \right) & \boldsymbol{0}_{1 \times 3} & c^2 \left(S_d \frac{\Delta t_{k-1}^2}{2} \right) \\ S_a \frac{\Delta t_{k-1}^2}{2} I_3 & \boldsymbol{0}_{3 \times 1} & S_a \Delta t_{k-1} I_3 & \boldsymbol{0}_{3 \times 1} \\ \boldsymbol{0}_{1 \times 3} & c^2 \left(S_d \frac{\Delta t_{k-1}^2}{2} \right) & \boldsymbol{0}_{1 \times 3} & c^2 (S_d \Delta t_{k-1}) \end{bmatrix}$$

Solving the Sparse Bias Problem

Measurements:

$$\mathbf{y}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{m}_k + \mathbf{n}_k$$

Profile likelihood:

$$oldsymbol{x}_{oldsymbol{k}} = (oldsymbol{H}_k^Toldsymbol{H}_k)^{-1}oldsymbol{H}_k^T(oldsymbol{y}_k - oldsymbol{m}_k)$$

$$\begin{aligned} &\arg\min_{\boldsymbol{x}_{k},\boldsymbol{m}_{k}} \frac{1}{2} \|\boldsymbol{y}_{k} - \boldsymbol{H}_{k}\boldsymbol{x}_{k} - \boldsymbol{m}_{k}\|_{2}^{2} + \lambda_{k} \|\boldsymbol{W}_{k}\boldsymbol{m}_{k}\|_{1} \\ &\arg\min_{\boldsymbol{m}_{k}} \frac{1}{2} \|\boldsymbol{y}_{k} - \underbrace{\boldsymbol{H}_{k}(\boldsymbol{H}_{k}^{T}\boldsymbol{H}_{k})^{-1}\boldsymbol{H}_{k}^{T}}_{\boldsymbol{P}_{k}}(\boldsymbol{y}_{k} - \boldsymbol{m}_{k}) - \boldsymbol{m}_{k}\|_{2}^{2} + \lambda_{k} \|\boldsymbol{W}_{k}\boldsymbol{m}_{k}\|_{1} \\ &\arg\min_{\boldsymbol{m}_{k}} \frac{1}{2} \|\underbrace{(\boldsymbol{I} - \boldsymbol{P}_{k})\boldsymbol{y}_{k}}_{\boldsymbol{\tilde{y}}_{k}} - \underbrace{(\boldsymbol{I} - \boldsymbol{P}_{k})\boldsymbol{W}_{k}^{-1}}_{\boldsymbol{\tilde{H}}_{k}} \underbrace{\boldsymbol{W}_{k}\boldsymbol{m}_{k}}_{\boldsymbol{\theta}_{k}} \|_{2}^{2} + \lambda_{k} \|\underbrace{\boldsymbol{W}_{k}\boldsymbol{m}_{k}}_{\boldsymbol{\theta}_{k}} \|_{1} \\ &\arg\min_{\boldsymbol{\theta}_{k}} \frac{1}{2} \| \widetilde{\boldsymbol{y}}_{k} - \widetilde{\boldsymbol{H}}_{k}\boldsymbol{\theta}_{k} \|_{2}^{2} + \lambda_{k} \|\boldsymbol{\theta}_{k} \|_{1} \rightarrow \text{LASSO problem} \end{aligned}$$

Discontinuities in Estimation

Non-convex Problem


```
Initialize \boldsymbol{W}
for \ell = 0, ..., \ell_{\max} do
Solve \boldsymbol{\theta}^{(\ell)} = \arg \min_{\boldsymbol{\theta} \in \boldsymbol{R}^n} \frac{1}{2} \| \boldsymbol{\tilde{y}} - \boldsymbol{\tilde{H}} \boldsymbol{\theta} \|_2^2 + \lambda \| \boldsymbol{W}^{(\ell)} \boldsymbol{\theta} \|_1
Update weights
for i = 1, ..., n do
w_i^{(\ell+1)} = \frac{1}{\boldsymbol{\theta}_i^{(\ell)} + \epsilon}
end for
end for
```


Julien LESOUPLE

Wavelets decomposition

$$\arg\min_{\boldsymbol{m}_{k}} \frac{1}{2} \| \tilde{\boldsymbol{y}}_{k} - \tilde{\boldsymbol{H}}_{k} \boldsymbol{m}_{k} \|_{2}^{2} + \lambda_{k} \| \boldsymbol{W}_{k} \boldsymbol{m}_{k} \|_{1}$$
$$\arg\min_{\boldsymbol{m}_{k}} \frac{1}{2} \| \tilde{\boldsymbol{y}}_{k} - \tilde{\boldsymbol{H}}_{k} \boldsymbol{m}_{k} \|_{2}^{2} + \lambda_{k} \| \boldsymbol{\psi}_{k} \boldsymbol{m}_{k} \|_{1}$$
(1)
(2)

Collaboration with Universidad Industrial de Santander (Columbia)

Julien LESOUPLE

Completion (marginalization trick)

$$\frac{w_{i,k}\lambda_k}{2}\exp\left(-w_{i,k}\lambda_k|m_{i,k}|\right) = \int_0^{+\infty} \frac{1}{\sqrt{2\pi s}}\exp\left(-\frac{m_{i,k}^2}{2s}\right)\frac{w_{i,k}^2\lambda_k^2}{2}\exp\left(-\frac{w_{i,k}^2\lambda_k^2s}{2}\right)ds$$
$$m_{i,k}|\lambda_k^2 \sim \mathcal{L}\left(m_{i,k}; 0, \frac{1}{\lambda_k w_{i,k}}\right) \Leftrightarrow \exists \tau_{i,k}^2, \begin{cases} m_k|\tau_{i,k}^2 \sim \mathcal{N}(m_{i,k}; 0, \tau_{i,k}^2)\\ \tau_{i,k}^2|\lambda_k^2 \sim \mathcal{E}\left(\tau_{i,k}^2; \frac{2}{\lambda_k^2 w_{i,k}^2}\right)\end{cases}$$

Posterior distribution

$$f(\mathbf{x}_k, \mathbf{m}_k, \tau_k^2, \lambda_k^2 | \mathbf{y}_k) \propto \underbrace{f(\mathbf{y}_k | \mathbf{x}_k, \mathbf{m}_k)}_{\text{likelihood}} \underbrace{f(\mathbf{x}_k) f(\mathbf{m}_k | \tau_k^2, \lambda_k^2) f(\tau_k^2 | \lambda_k^2)}_{\text{priors}} \underbrace{f(\lambda_k^2)}_{\text{hyperprior}}$$

Hierarchical Bayesian Model with MP indicator

$$\begin{aligned} \mathbf{y}_{k} | \mathbf{x}_{k}, \mathbf{m}_{k}, &\sim \mathcal{N}(\mathbf{y}_{k}; \mathbf{H}_{k}\mathbf{x}_{k} + \mathbf{m}_{k}, \mathbf{R}_{k}) \\ \mathbf{x}_{k} &\sim \mathcal{N}(\mathbf{x}_{k}; \mathbf{0}, \mathbf{P}_{k|k-1}) \end{aligned}$$

$$\begin{aligned} \mathbf{m}_{i,k} | b_{i,k}, \tau_{i,k}^{2} &\sim \begin{cases} \delta(m_{i,k}) & \text{if } b_{i,k} = 0 \\ \mathcal{N}\left(m_{i,k}; 0, \tau_{i,k}^{2}\right) & \text{if } b_{i,k} = 1 \end{cases}, i = 1, \dots, 2s_{k} \end{aligned}$$

$$\begin{aligned} \tau_{i,k}^{2} | \lambda_{k}^{2} &\sim \mathcal{E}\left(\tau_{i,k}^{2}; \frac{2}{\lambda_{k}^{2} w_{i,k}^{2}}\right), i = 1, \dots, 2s_{k} \end{aligned}$$

$$\begin{aligned} b_{i,k} | p_{k} &\sim \mathcal{B}(b_{i,k}; p_{k}), i = 1, \dots, 2s_{k} \end{aligned}$$

$$\begin{aligned} p_{k} &\sim \mathcal{U}_{[0,1]}(p_{k}) \\ f(\lambda_{k}^{2}) &\propto \frac{1}{\lambda_{k}^{2}} \end{aligned}$$

Conditional distributions with MP indicator

Latent variable
$$\tau_{i,k}^{2}|m_{i,k}, \lambda_{k}^{2}, b_{i,k} \begin{cases} \mathcal{E}\left(\tau_{i,k}^{2}; \frac{2}{w_{i,k}^{2}\lambda_{k}^{2}}\right) & \text{if } b_{i,k} = 0\\ \mathcal{GIG}\left(\tau_{i,k}^{2}; \frac{1}{2}, w_{i,k}^{2}\lambda_{k}^{2}, m_{i,k}^{2}\right) & \text{if } b_{i,k} = 1 \end{cases}$$

Multipath indicator $b_{i,k}|y_{i,k}, \mathbf{x}_{k}, \tau_{i,k}^{2}, p_{k} = \mathcal{B}\left(b_{i,k} \left| \frac{v_{i,k}}{u_{i,k}+v_{i,k}} \right. \right)$

Multipath indicator

$$oldsymbol{m}_k | oldsymbol{y}_k, oldsymbol{x}_k, oldsymbol{ au}_k^2 \sim \left\{ egin{array}{cc} \delta(oldsymbol{m}_{i,j}) & ext{if } b_{i,k} = 0 \ \mathcal{N}(\mu_{oldsymbol{m}_{i,k}}, \sigma_{oldsymbol{m}_{i,k}}^2) & ext{si } b_{i,k} = 1 \end{array}
ight.$$

State vector variation

$$oldsymbol{x}_k | oldsymbol{y}_k, oldsymbol{m}_k \sim \mathcal{N}(oldsymbol{x}_k;oldsymbol{K}_k(oldsymbol{y}_k - oldsymbol{m}_k),oldsymbol{P}_{k|k})$$

Hyperparameter λ_k

Multipath bias

Hyperparameter p_k

$$\lambda_k^2 | \boldsymbol{\tau}_k^2 \sim \mathcal{G}\left(\lambda_k^2; 2s_k, \frac{1}{2}\sum_{i=1}^{2s_k} w_{i,k}^2 \boldsymbol{\tau}_{i,k}^2\right)$$

 $f(p_k|\boldsymbol{b}_k) = \mathcal{B}e(p_k; \|\boldsymbol{b}_k\|_0 + 1, 2s_k - \|\boldsymbol{b}_k\|_0 + 1)$

$$u_{i,k} = (1 - p_k), \quad v_{i,k} = p_k \sqrt{\frac{\sigma_{m_{i,k}}^2}{\tau_{i,k}^2}} \exp\left(\frac{\mu_{m_{i,k}}^2}{2\sigma_{m_{i,k}}^2}\right)$$

Multipath Detection/Estimation: Hyperparameter evolution

Parameters : $A_i, \Pi_i, \mu_i, \sigma_i^2$

Used online

Need to learn the distributions

3 modes per satellite

Modes evolution estimated before $(C/N_0 \text{ values})$

 A_i and Π_i are the proportions μ_i, σ_i^2 estimated via residuals

Particle Filter

M modes per measurement

Modes evolution estimated after (MAP estimator)

 $oldsymbol{A}_i, oldsymbol{\Pi}_i, oldsymbol{\mu}_i, oldsymbol{\sigma}_i^2$ are estimated via Baum-Welch

Bank of Kalman filters