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Abstract. Streaming video consumption has risen sharply over the last
years. It has not only reshaped the Internet traffic, it has also changed
the manner of watching videos. Users are progressively moving from
the old-fashioned scheduled television to video-on-demand (VoD) ser-
vices. As broadcasting future seems to be online, customers have become
more sensitive to VoD quality, expecting ever-higher bitrates and lower
rebuffering. In this context, average bitrate is a key quality of service
(QoS) metric. Therefore, content delivery networks (CDNs) and con-
tent providers must be committed to enforce average bitrate through
service-level agreement (SLA) contracts. Adaptive content replication
is a promising technique towards this goal. However, this still offers a
major challenge for CDN providers, particularly as they aim to avoid
waste of resources. In this work, we introduce WiseReplica, an adaptive
replication scheme for peer-assisted VoD systems that enforces the aver-
age bitrate for Internet videos. Using an accurate machine-learned rank-
ing, WiseReplica saves storage and bandwidth from the vast majority
of non-popular contents for the most watched videos. Simulations using
YouTube traces suggest that our approach meets users expectations effi-
ciently. Compared to caching, WiseReplica reduces the required replica-
tion degree for the most-watched videos by two orders of magnitude, and
under heavy load, it increases the average bitrate by roughly 85 %.

Keywords: Peer-to-peer (P2P) · Video on-demand (VoD) · Caching ·
Replication · Service-level agreement (SLA) · Prediction

1 Introduction

The increasing consumption of Internet videos has made fundamental changes
in the Internet traffic and consumers’ behaviour. Cisco System, Inc1 forecasts
that the sum of all forms of video traffic will be in the range of 80 to 90 percent of

1 Cisco Visual Networking Index: Forecast and Methodology, 2013–2018. www.cisco.
com, 2014.
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global consumer traffic by 2018, including video on-demand (VoD), live stream-
ing, and peer-to-peer (P2P) file sharing. In fact, as the Internet access has become
ubiquitous, continuously faster, and cheaper, streaming video has become main-
stream. Users are progressively moving from the old-fashioned scheduled televi-
sion to VoD services. This contributes to increase the expectations of consumers
on Internet video delivery.

Since broadcasting future seems to be online, customers have become more
sensitive to VoD quality, expecting ever-higher bitrates and lower rebuffering.
Contrary to many traditional workloads, e.g. social network messaging or search
engines, specifying just latency as quality of service (QoS) metric does not suf-
fice. Instead, streaming traffic requires proper average bitrate to avoid rebuffer-
ing and improve user experience. For example, Dobrain et al. [13] found that
a 1 % increase in buffering ratio can reduce the consumer’s expected viewing
time by more than three minutes. Balachandran et al., observe that increased
average bitrate in Internet video delivery leads to a better user experience for
viewers with mobile devices [3]. This suggests that service-level agreement (SLA)
contracts must include average bitrate as a key QoS metric.

Yet, current Content Delivery Networks (CDN) platforms are not ready to
fulfil the requirements of the increasing demand for VoD services and meet con-
sumers’ expectations. Through fine-grained client-side measurements from over
200 million client viewing sessions, Liu et al. [21] showed that 20 % of these ses-
sions experience a rebuffering ratio of at least 10 %, 14 % of users have to wait
more than 10 s for video to start up, more than 28 % of sessions have an average
bitrate less than 500 Kbps, and 10 % of users fail to see any video at all.

To deal with these issues, CDN providers have started to combine datacen-
ters and edge network resources in hybrid designs2. This includes peer-assisted
VoD systems [17] whose deployment requires hybrid CDN platforms. The aim
of peer-assisted VoD systems is to take advantage of both infrastructure-based
resources and P2P communication facilities. Huang et al. [17] suggest the use
of peer-assisted VoD systems to improve resource allocation for Internet video
delivery. They argue that devices on edge networks, e.g. set-top-boxes, contribute
with storage and bandwidth to video delivery, reducing dramatically the burden
on infrastructure-based servers, and cutting operations costs. Many recent stud-
ies [10,18,25] confirm that exploring peer-assisted VoD system permits enhanc-
ing resource allocation for streaming videos, but none has properly evaluated
the performance of video delivery regarding SLA enforcement.

In fact, there exists an increasing need for more research in easy-to-deploy,
self-adapting techniques for ensuring tough QoS guarantees brought by the cloud
paradigm. However, efficient resource allocation on hybrid CDNs to meet user
expectations imposes big challenges, particularly for resource-hungry services as
VoD. This paper identifies adaptive content replication as one of such challenges.
Adaptive replication plays an important role on the content availability of dis-
tributed systems, contributing directly to both storage and bandwidth provision.

2 Akamai acquires Red Swoosh. http://www.akamai.com/html/about/press/releases/
2007/press 041207.html, April 2007.

http://www.akamai.com/html/about/press/releases/2007/press_041207.html
http://www.akamai.com/html/about/press/releases/2007/press_041207.html
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As the popularity of a video varies, the number of replicas, or peers serving that
video, must be adapted accordingly. Generally speaking, the faster and more
precise the replication scheme reacts to changes on videos demand, the better is
the resource allocation and content availability.

Considering average bitrate as target QoS metric, we make a case for a
SLA-driven replication scheme named WiseReplica that allows us to meet users’
expectations in peer-assisted VoD system properly. We assume the system must
enforce the right average bitrate for each video through SLA contracts. Our
ultimate goal is two-fold: (i) to prevent SLA violations and (ii) to reduce the
number of video replicas. To perform efficient Internet video replication, Wis-
eReplica relies on a novel, accurate machine-learned ranking of Internet videos.
To rank video in order of demand, our prediction model encompasses multiple
measurements of Internet video activity in peer-assisted VoD system, including
active viewers, video duration, average serving time, and mean time between
requests view. The use of this prediction model in WiseReplica provides the
ability to adapt the replication degree of videos dynamically according to their
encoding settings and popularity, reducing storage usage and enhancing network
provision. We make two main contributions:

Investigate how predictable is a ranking of Internet videos. We design
a learning model to capture the dynamic behaviour of streaming video demand.
The model makes predictions based on lightweight measurements of the request
arrival process. Using a novel machine-learned ranking, we predict demand of a
video accurately. Thus, the higher the rank position, the higher the demand for
fresh replicas. According to the video ranking position, VoD services operators
can define and evaluate different replication policies. For instance, top-ranked
Internet videos may be twice as much replicated as those ranked in the second
position. This intuitive model allows us to decouple streaming demand from
replication policy. Our model is flexible and can learn from different sources and
big amounts of data, providing a robust framework for controlling VoD resource
allocation. Simulations using YouTube traces, with non-stationary behaviours,
suggest that our model is very accurate in predicting the ranking of Internet
videos. Since our ranking of videos is based on random forests, a parallelizable,
state-of-the-art machine learning method, it fits runtime requirements of large
VoD systems.

Enforce average bitrate through SLA-based video replication. Based
on our machine-learned ranking of Internet video, we designed and evaluated
WiseReplica, an easy-to-deploy, SLA-based replication scheme that meets users’
expectations for VoD services. WiseReplica is fully compliant with peer-assisted
VoD systems in hybrid CDN platforms. It operates adaptive replication over sets
of devices located close to each other in edge networks, namely storage domains.
WiseReplica functioning per storage domain is straightforward. Gradually, it
verifies the rank position of a video whenever a new local request arrives, and
adapts the replication degree accordingly. Using a collaborative caching, video
replicas are either pre-fetched or removed randomly. We show through simula-
tions using YouTube traces that WiseReplica outperforms a non-collaborative
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caching approach by preventing violations, reducing storage usage, and enhanc-
ing network resources provision. Furthermore, our replication scheme is easy to
adopt and flexible enough to offer interoperability with de facto approaches,
including HTTP adaptive streaming technique and BitTorrent protocol [32].

This work is organized as follows. In Sect. 2, we present the context and chal-
lenges of this research. We describe in details our prediction model to rank Inter-
net videos in order of demand in Sect. 3. Section 4 describes the approach of our
adaptive replication scheme, WiseReplica. We explain our simulation method-
ology in Sect. 5. We then analyse the performance of WiseReplica in Sect. 6.
Related works are discussed in Sect. 7, just before the conclusion in Sect. 8.

2 Context and Challenges

In this section, we describe the context and the challenges of this work.

2.1 Improving Content Availability to Better User Experience

Many studies have shown that quality of user experience while watching online
videos is related to the good quality of content transmission. They presented
many strategies to enhance the video content availability and its distribution.
Most of these studies analyse in the field are focused on Youtube, being this
the major player of video content distribution [1,5,6,14]. These studies include
the analysis of crawled data from Youtube APIs and comparisons of caching
strategies from collected data of users’ point of view (HTTP logs from ISP or
local networks).

Dobrian et al. [13] study has shown the correlation between the user engage-
ment and the video quality, being the Buffering Ratio (fraction of the total
session time spent in buffering) and Rendering Rate (frames per second) the
most critical metric over the total played time for short videos, the current tar-
get of our method. This characterizes the relation between quality of service and
user experience and endures the importance of avoidance of SLAs violations,
which minimizes buffering ratio, confirming the main metric of evaluation in our
work.

Furthermore, Finamore et al. [15] stated that the download bitrate of the
video plays a fundamental role in video playback quality. They measured the
smoothness of the playback by the bitrate ratio, defined as the ratio between
the average session download bitrate and the video encoding bitrate. Considering
different bitrates in the input dataset is a key aspect of the rendering rate metric
in user engagement and playback quality.

Another important concern in studying the availability of Internet videos was
to provide a SLA-based solution with the minimum constrains regarding deploy-
ment. However, recent studies [2,34] are based in substantial changes in the
normally used stack of protocols and network infra-structure and they become
hard to be considered as a feasible solution. Our solution takes in account a
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well-know and largely used infra-structure and have no changes in the stack
protocol. Despite all these research efforts, enforcing video availability in large
peer-assisted VoD systems remains a challenging issue.

2.2 On the Track of YouTube Popularity Growth Curves
and High Quality Videos

A fair reproduction of user interactions to Internet videos is essential to evaluate
peer-assisted VoD systems properly. Hence, we study in this work a workload
that combines YouTube traces [14] to well-known videos’ access patterns [33].
We are particularly interested in reproducing realistic popularity growth curves,
considering advanced coding setting and common VoD demand patterns.

We study the data crawled by Figueiredo et al. [14], whose datasets are cur-
rently available online3. The dataset allows us to characterize the growth pat-
terns of YouTube videos. In particular, they analysed three types of YouTube
videos sets: videos that appear on YouTube top list, videos that were banned
from YouTube due to copyrights violations, and videos that were randomly
selected through API calls. They crawled once a number of videos’ daily fea-
tures. For each video, there are up to 100 daily measurements, or daily available
samples, per feature. In this work, we are mostly interested in the measurements
of view data feature, that depicts the popularity growth curve of a video through
a array of cumulative number of daily views ranging from 0 to the total number
of views.

In order to reproduce realistic, high quality videos encodings, we consider the
YouTube advanced encoding settings4. Table 1 depicts the set of high definition
(HD) video encodings that we use in this work.

Table 1. Advanced encoding settings for YouTube videos used in this work.

Type Video bitrate Mono audio bitrate Stereo audio bitrate 5.1 Audio bitrate

1080p 50 Mbps 128 kbps 384 kbps 512 kbps

720p 30 Mbps 128 kbps 384 kbps 512 kbps

480p 15 Mbps 128 kbps 384 kbps 512 kbps

360p 5 Mbps 128 kbps 384 kbps 512 kbps

2.3 Investigating Network Resources Provision for Internet Videos

Replication schemes have become an important building block for Internet video
providers to improve content availability and meet consumers’ expectations. An
3 The Tube over Time: Characterizing Popularity Growth of YouTube Videos. http://

www.vod.dcc.ufmg.br/traces/youtime/data/, January 2013.
4 Advanced encoding settings for YouTube videos. http://support.google.com/

youtube/bin/answer.py?hl=en-GB&answer=1722171, June 2014.

http://www.vod.dcc.ufmg.br/traces/youtime/data/
http://www.vod.dcc.ufmg.br/traces/youtime/data/
http://support.google.com/youtube/bin/answer.py?hl=en-GB&answer=1722171
http://support.google.com/youtube/bin/answer.py?hl=en-GB&answer=1722171
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adaptive replication scheme should offer content replica maintenance to handle
popularity growth properly.

Non-collaborative caching remains the simplest approach to provide adaptive
replication of web content [20]. They adapt the replication degree to the con-
tent popularity using cache replacement policies, and assuming fair-sharing as
a key scheduling strategy. But, Internet videos’ workloads on peer-assisted VoD
systems bring major obstacles to non-collaborative caching, e.g. the resource
imbalance in peers for replicas, and a growing need for high bitrate provision for
meeting consumers’ expectations. Therefore, relying just on cache replacement
policies and fair-sharing scheduling can undermine the performance of the whole
system.

Recent studies have sought an optimal solution to this problem. For instance,
Chang and Pan [10] propose a modelling framework towards optimal caching
strategies, including collaborative caching. They confirm that this problem is
NP-hard, and only suboptimal solutions can be found.

2.4 Challenges

In order to meet increasing consumers’ expectations on Internet videos, a good
peer-assisted VoD system must overcome the following challenges:

1. It must cope with dramatic, unexpected variations in videos popularity.
2. It must avoid waste of resources, and reduce as much as possible storage and

network usage on peers of edge networks.
3. It must prevent rebuffering of VoD streaming through a self-adaptive, easy-

to-deploy technique.

Our simulations suggest that meeting consumers’ expectations in terms of
average bitrate is a difficult task, specially under heavy load. State-of-the-art
approaches fail to handle these challenges mostly because they are not able
(i) to capture VoD demand, and (ii) to define a metric to measure consumers’
expectations. WiseReplica copes with these issues by inferring users’ expecta-
tions for videos and predicting the amount of resources to fulfil the demand in a
self-adaptive way. Our findings show that this approach produces a good balance
between resource allocation and users’ satisfaction.

3 A Machine-Learned Ranking of Internet Videos

We designed a prediction model for ranking Internet videos in order of demand.
In this work, video demand involves both popularity and QoS requirements.
Our main goal is to provide an intuitive, accurate method to capture requesting
behaviours of streaming videos. In this section, we highlight the foundations of
our statistical learning approach. First, we present a brief overview of statistical
learning. Then we explain the model, describing our learning-to-rank problem.
Finally, we describe our implementation and we present a framework for ranking
predictions.
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3.1 An Overview About How to Learn from Data

Statistical learning is about learning from seen data in order to predict unseen
data with minimal error. Data comprise inputs x represented by a vector with
a fixed number of dimensions p (x ∈ X ⊂ R

p) from the input space X . In
our problem, x is a video, represented by a vector of measurements from video
sessions’ activity.

In supervised learning, each input measurement is coupled with a y, a label
selected by an oracle, from the output space Y. To learn, we take N pairs (x, y)
drawn independently and identically distributed (i.i.d.) from a fixed but unknown
joint probability density Pr(X,Y ). This is true for both training and testing
datasets. For instance, we consider the training dataset S = {xi, yi}N

i=1 of N
pairs (x, y). Using this dataset, the supervised learning algorithm searches for a
function f : X → R in a fixed function class F . State-of-the-art algorithms, such
as support vector machines (SVM) [11] or ensemble methods [16], aim to find
f� in F with the lowest empirical risk defined as:

f� ∈ arg min
f∈F

remp(f) (1)

where remp(f) = 1
N

∑N
i=1 I{f(x) �=yi} is computed over the training set, and I{.} is

the indicator function which returns 1 if the predicate {.} is true and 0 otherwise.
In other terms, remp is a quality measure relating the label to the prediction
provided by the function f on the training dataset S.

To model our prediction problem, we use a statistical learning approach
called learning-to-rank. This approach has been a hot topic in Machine Learn-
ing community for the last 10 years. It combines properties of two well-known
other approaches: regression, where y ∈ Y ⊂ R; classification where y ∈ Y ⊂
{0, 1, ...,K} with K ≥ 1. In learning-to-rank approach, y gives an indication on
the target order (formally represented by a permutation σ ∈ Σ).

3.2 A Ranking Model for Internet Videos

The main purpose of our learning model is to capture popularity growth dynam-
ics and system resources availability of peer-assisted VoD systems. Therefore, we
assume that prediction model must allow us to rank Internet videos in order of
demand. This can be modelled as a learning-to-rank problem.

Given an i.i.d. sample (x, y) such as described in Subsect. 3.1, we model
inputs and outputs as follows.

Inputs. We represent the input space x is a video described as 10 lightweight
measurements from the request arrival process. These measurements are video
size, network availability, network usage (load), current number of viewers and
replicas, inter-arrival time between requests (delta), aggregate number of views,
mean of time between requests (mtbr), life time, and average bitrate. We com-
pute averages and means from up to the five last requests. Our goal is to gather
as much information about users’ interactions as possible in an easy manner to
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make accurate predictions about the ranking of videos. To extend our model, one
can easily add further features or measurements such as geographical location,
social network interactions data, buffering ratio, rate of buffering events, session
join time, rendering quality, rate of bitrate switch, etc.

Outputs. The supervision y associated to each input video x is based on four
possible ordered values which gives an indication for the final target ranking. In
our model, Y ∈ {0, 1, 2, 3}, whose labels are {non-popular, popular, very popular,
viral} respectively. It represents a natural ranking for Internet videos. Using
this ranking model, we intend to provide a measure of video demand, which is
closely related not only to the popularity, but also to the consumption of system
resources.

Finally, the learning-to-rank module finds a function f from Eq. (1) with
the constraint of maintaining the prediction order: ∀i, j, i �= j, yi > yj then
f(xi) > f(xj) explained in [7]. In that case, theoretical performance guaran-
tees are provided. Practically, the use of the mean square error (y − f(x))2

instead of the indicator function I{.} (which is hard to optimize because it is
non-differentiable) allows us to ensure a calibrated learning to rank algorithm.
A calibrated algorithm means there is a theoretical link between the approxima-
tion of the empirical risk, that is easier to optimize, and its non-differentiable
version [7,9,31,35].

3.3 Framework for Learning and Predicting, and Implementation

We implement our model using ensemble methods. According to Friedman et al.,
ensemble learning consists of a set of very popular supervised methods, that
are robust, simple to train and tune, and have a remarkable prediction per-
formance. Our implementation is based on Scikit-learn, a general-purpose
machine learning library [26].

We designed a simple framework to use our learning module, depicted in
Fig. 1. Our framework has two phases: (i) learning and (ii) predicting. Each
phase has its own YouTube-like workload. Learning is a preliminary phase that
commonly runs offline in a batch mode, while the prediction can go online. In
this work, both phases are performed with data from simulations. In the learning
phase, we first generate the training dataset, described in Subsect. 5.4. Then we
feed this training dataset to our learning model, represented here as module of

Fig. 1. Framework for learning and predicting ranking of Internet videos.
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WiseReplica, in order to identify YouTube ranking patterns. Once the learning
phase has been accomplished, WiseReplica can use its learning module in a pre-
dicting phase, as indicated in the left-hand side of Fig. 1. In this phase, inputs
come for measurements of the request arrival process of workload 2, that permit
accurately ranking Internet videos in order of hotness and instrumenting replica-
tion accordingly inside storage domains. We highlight WiseReplica functioning,
including storage domains, in the next section.

4 Boosting VoD Delivery: The WiseReplica Approach

In this section, we describe WiseReplica replication scheme. First, we highlight
how WiseReplica operates in edge networks, by in introducing the concept of
storage domains. Then, we explain its replication strategy based on predictions
of ranking of video demand.

4.1 Distributing VoD with Storage Domains

We assume that WiseReplica operates in peer-assisted VoD systems deployed on
hybrid CDN platforms. We consider the hybrid CDN design called Caju, that is
detailed in our previous work [30] as our target platform. It is based on sets of
devices located close to customers, named storage domain. A storage domain is a
logical entity that combines resources from both datacenters and edge networks
in the last mile of the content delivery chain. As Fig. 2 shows, devices in a storage
domain can play either a coordinator or peer role.

Coordinator is a server or a small-sized cluster of servers deployed in the
nearby datacenter. We assume that the coordinator performs scheduling of video
requests for the local storage domains. Therefore, it runs the main instance of
WiseReplica, and keeps information about resources consumption. Its main goal
is to maintain the right number of replicas per video in the local peers, by pre-
fetching or deleting sources. Instead of always contacting the content providers,
coordinators might interoperate in logically centralized way to fetch videos that
have been vanished from a storage domain. They store the most recent videos
in their own cache for replication purposes. Whenever a new replica is neces-
sary, the coordinator pushes it to a randomly, uniformly selected peer. Similarly,
coordinators send video deletion requests to local peers.

Peers is a set of devices located close to each other through which customers get
network access, e.g. home gateways connected to the same digital subscriber line
access multiplexer (DSLAM). These devices actually deliver videos to customers
in a storage domain, being the main source of storage and network resources.
They execute scheduling and replication commands sent by the storage domain’s
coordinator. Each peer contributes with a percentage of storage and network
resources to the system, as in a collaborative caching. In the local cache is applied
the LRU policy for videos replacement.

This model is specially interesting for the problem of videos delivery as
it takes advantage of nodes geographical position [6]. It provides two main
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Fig. 2. Storage domains.

infrastructure properties to WiseReplica: replication group and hop limit. The
replication group allows WiseReplica to adapt video replication for smaller sets
of peers, most likely connecting customers with similar content interests. By
enforcing a hop limit, storage domains avoid jitter, ensure low latencies, and
permit WiseReplica improving the efficiency of network resource provision.

In addition, we assume that a storage domain enforces an initial placement
policy. This policy defines the minimum replication degree m for initial copies
for any new, just fetched Internet video. Request scheduling is simple. A view
request is served by at most R nodes with uniform load. Available sources come
from r = min(n,R), where n is the number of current replicas. In this work, we
consider m equals to two and R equals to five as default settings. For requests
scheduling, this approach enforces well-known policies for peers in edge networks,
including nearest source selection and multi-sourcing.

4.2 Self-Adapting Replication According to the Ranking of Internet
Videos

Our utmost goal is to contribute to meet increasing customers expectation on
Internet videos using peer-assisted VoD systems. To enhance VoD delivery, we
assume that rebuffering is a major issue to be addressed. We propose to cope with
this issue by enforcing minimum average bitrate of each streaming as the main
QoS metric. In this scenario, content and CDN providers must be committed
to enforce minimum average bitrate for videos through SLA contracts. Since
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Internet videos delivery is a resource-hungry service, we must also adapt the
network provision and storage usage as we aim to prevent violations. To this
end, we propose WiseReplica, an adaptive replication scheme for peer-assisted
VoD systems based on storage domains.

WiseReplica maintains replicas inside a storage domain. Running on the
coordinator, it adapts the replication degree of Internet videos of a storage
domain according to a machine-learned ranking. Our scheme follows a three-
part procedure:

Collect Information from the Request Arrival Process. For each video
request, WiseReplica collects 10 lightweight measurements. The goal is to gather
comprehensive information for measuring the video demand and accurately pre-
dicting the raking. As described in Sect. 3, they are video size, network availabil-
ity, network usage (load), current number of viewers and replicas, inter-arrival
time between requests (delta), aggregate number of views, mean of time between
requests (mtbr), life time, and average bitrate. We compute averages and means
from the last up to five requests. It is important to notice that all these mea-
surements can be easily collected in the storage domain’s coordinator.

Rank Internet Videos in Order of Demand. Based on the measurements
of the request arrival process, we use the learning model described in Sect. 3
for predicting the rank position of Internet videos demand. We can predict the
video rank for each view from the second request. The ranking comprises infor-
mation about demand and QoS requirements. Predictions are quite essential
for enhancing VoD delivery. Since our learning model make predictions on a
request basis, WiseReplica can react to the video demand as promptly as the
rank position evolves. Indeed, ranking is an intuitive way to capture the demand
of videos in peer-assisted VoD systems. The higher is the demand rank position
of an Internet video, the higher is the demand for it. There are four positions
on our machine-learned ranking: non-popular, popular, very popular, and viral.
WiseReplica has a straightforward strategy to perform replication according to
hotness rank positions. Videos that fall into the lowest rank position can have
their replication degree reduced, otherwise they need more replicas. Thus, the
maintenance of replication degree of Internet video, including video creations
and deletions in peers, relies on replication policies.

Enforce Replication Policy Accordingly and in Time. The goal of repli-
cation policies is two-fold: first (i) ensure consumers’ expectations in time and
(ii) reduce the total number of replicas as much as possible. For that, WiseReplica
must adapt replication of videos according to the forecasts of their rank positions.
Our replication scheme enforces two types of replica maintenance policies: dele-
tion and creation policy. In this work, we enforce a single video deletion policy.
Whenever the coordinator receives a request to a video in the non-popular rank,
the deletion policy says that one replica is deleted until the minimum replication
degree m is reached. Similarly, our scheme periodically runs a maintenance pro-
cedure (e.g. each five minutes) to smoothly enforce the deletion policy for inactive
videos. This allows WiseReplica to reduce the total number of replicas. To cope
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with SLA violations and meet customers’ expectations, we evaluate four quite
simple policies, namely uniform, linear, quadratic, and exponential. They are
respectively defined as follows: B,Br,Br2, and Br, where B is a constant that
represents the target number of replicas, and r ∈ {1, 2, 3} the rank positions.
We report on creation policies’ performances in Sect. 6.

Our findings show that this approach produces a good balance between
resource usage and consumers’ satisfaction. It is important to note, however,
WideReplica does not cover video durability, neither does fault-tolerant mecha-
nisms (e.g. failure detection/recovery procedures). Rather, our goal is to improve
VoD availability, boosting network provision, meeting consumers’ expectations
on VoD services, and reducing storage usage as much as possible. To this end,
WiseReplica combines lightweight measurements, accurate predictions of Inter-
net videos ranking, and replication policies enforcement in a particularly novel,
flexible way. In peer-assisted VoD systems, it can easily interoperate with de
facto approaches, including HTTP adaptive streaming technique and swarming
protocols, such as BitTorrent.

5 Simulation Methodology

We simulate a peer-assisted VoD system based on a hybrid CDN design
called Caju [30]. We evaluate WiseReplica using YouTube traces. We compare
WiseReplica performance with other two adaptive replication schemes, namely
non-collaborative caching and Oracle-like collaborative caching. The aim of our
simulations is to study in details the variability of demand and resource allo-
cation of VoD services on edge networks, and the performance of replication
schemes in enforcing expected Internet video availability.

5.1 Workload from YouTube Traces and SLA Definition

The workload and SLA definitions are at the core of our evaluation. We define a
workload that captures the main features of VoD services using YouTube traces,
and a SLA contract that meets users’ expectations.

In the workload definition, we are particularly interested in reproduce a real-
ist request arrival process, placing the emphasis on popularity growth and video
encodings. Thus, we use YouTube traces, presented in Subsect. 2.2. Before inte-
grating YouTube traces to our workload, we first preprocessed their YouTube
datasets to remove inconsistent measurements, such as videos with no views.
Basically, we got rid of videos with small number of total views (those smaller
than the first quartile) and videos with few daily measurements (those smaller
than the third quartile). That allowed us to pick off 20 % most representative
YouTube growth patterns, accounting for 21827 distinct curves. Then, we ran-
domly selected, with a uniform distribution, curves from this preprocessed data
to be assigned to videos of our workload. Similarly, we assigned high quality
YoutTube video encodings to our workload videos, based on advanced settings
depicted in Table 1. To summarize, Table 2 lists default values for workload
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Table 2. Default values for workload parameters.

Workload

Requests per user uniform

Experiment duration 4 h

Mean requests per second 100

Requests fractions 5 % of creations, 95 % of views

Video size (follows Pareto) shape = 3, between 13 MB and 1.6 GB

Video popularity (Zipf-Mandelbrot) shape = 0.8, cutoff = number of videos

Videos’ creation (Poisson) λ = creations per second

Popularity growth from YouTube traces 21827 distinct patterns

YouTube encoding settings (bitrates) 5 Mbps, 15 Mbps, 30 Mbps, 50 Mbps

parameters. Finally, videos are always divided and distributed in chunks or seg-
ments of fixed size, 2 MB.

In terms of SLA definition, we assume that content and content delivery
providers are committed to improving the Internet video availability for cus-
tomers in a content-oriented approach. In our case, a good peer-assisted VoD
system must ensure videos availability by avoiding rebuffering. Therefore, we
consider a global, simple SLA contract drawn up to provide a minimal average
bitrate according to each Internet video encoding setting. A SLA violation hap-
pens whenever the system fails to enforce the minimal average bitrate for any
viewer session.

5.2 Evaluation Scenario

Our evaluation scenario (Fig. 3) includes 4002 nodes, arranged across two stor-
age domains. There are one coordinator and 2000 peers per storage domain.
Storage and network capacities differ according to the device role. Coordinators
have 20 TB of storage capacity and full-duplex access link of 4 Gbps. Peers con-
tribute 200 GB each, equipped with 100 Mbps full-duplex links. Note that the
two coordinators contribute with a small fraction of aggregate edge resources,
i.e. 5 % of the storage capacity and only 2 % of the total network capacity. This
draws our attention to the performance of replication schemes towards peers
resource allocation. We assume only 1 % peers’ storage is available for caching
additional replicas, namely 2 GB.

We implemented and evaluate this work using simulation. To this end, we
developed a simulation tool on top of PeerSim [24] to implement storage domains
in edge network and bandwidth scheduling.Our design focus on network’s re-
source allocation accuracy for simulating bitrate enforcement and concurrent
videos views properly. Design and implementations details of our tools to sim-
ulate network resource scheduling are available in our previous work [28]. We
have performed our simulations using servers equipped with Intel Xeon E5450
3.00 GHz, and a RAM of 4 GB.
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Fig. 3. Evaluation scenario.

5.3 Comparable Replication Schemes

We compare WiseReplica with two other schemes.

Non-collaborative Caching. Adaptive replication schemes based on non-
collaborative caching, such as those that uses Least Recent Used (LRU) algo-
rithm, are easy to implement and deploy. A new replica is created in a peer
whenever a user requests to view a video. LRU replacement is enforced regard-
ing the static percentage of the local storage capacity for caching of 1 %.

Oracle-LikeCollaborativeCaching.This is an idealized benchmark case. Here,
we assume a peer-assisted VoD system deployed in a network that runs a deadline-
aware transport protocol, similar to Wilson et al. [34] work. Based on our previous
work with AREN [29], an adaptive replication scheme for edge networks, we imple-
mented a benchmark replication scheme that relies on bandwidth reservation and
collaborative caching to provide an adaptive number of replicas for videos. We
replicate videos according to aggregate network usage by enforcing a low and high
thresholds. This makes the video replication a function of bandwidth reservation,
and ensures that network and storage provision follows video demand properly, as
depicted in Fig. 4. Per video, we consider two percentage thresholds for aggregate

Fig. 4. Oracle-like bandwidth management for a video, illustrating aggregate band-
width for N replicas and b available bandwidth, bandwidth reservation (bandwidth
usage) and thresholds (Pmin and Pmax).
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network usage: Pmin and Pmax. Our replication strategy works as follows. A video
v that has N replicas in peers with network capacity of b requires more replicas
if the current bandwidth reservation U(v) > Pmax

∑N
i=1 b. Similarly, if U(v) <

Pmin

∑N
i=1 b, replicas can be deleted. Otherwise, keep the replication degree.

Although this empirical approach is hard to be adopted in a real deployment, our
previous results [29] suggest that it allows us to achieve near-optimal results, pre-
venting all SLA violations, enhancing network usage and decreasing storage usage
dramatically.

5.4 Collecting the Datasets for Learning

To perform rank predictions of Internet videos, we need training datasets from
which we can learn the behaviour of video demand in peer-assisted VoD systems.
In this section, we explain the methodology to gather data for these predictions.

The training dataset of our prediction model comes from measurements of the
request arrival process on per-assisted VoD systems, as described in Subsect. 3.2.
Each line of our training dataset has 11 values, 10 input measurements about a
video current state, and a rank position. Although, the datasets evaluated in this
work were synthetically collected by performing simulations with the Oracle-like
benchmark replication approach (detailed in Subsect. 5.3), similar datasets can
be collected from monitoring systems of running CDN systems.

In this work, Oracle-like benchmark replication approach (Subsect. 5.3) rep-
resents the near-optimal way to serve VoD service according to video encodings
and popularity, whose functioning we are very interested in learning. In this
empirical approach, a video requires additional replicas only if there exists a cer-
tain number of concurrent accesses, where concurrence is measured by checking
a high threshold of the current reserved bandwidth, as detailed in Subsect. 5.3.
We assume that popular videos are those that have additional replicas during its
lifetime. Since Internet videos popularity distribution follows a Zipf-like distribu-
tion [33], concurrent access are rare events as well as popular videos classified by
this approach, thus it provides a quite fair approach to identify popular videos.

Raw data from Oracle-like technique permits easily distinguishing between
two ranking positions only, non-popular and popular videos, i.e. requests to
non-popular videos are all those that do not trigger any replica creation, or
those that resulted in deletions. However, there is a lack of information about
different ranking positions of popular videos. Hence, depending on the frequency
of replica creation, we add information to requests to popular videos classifying
them in popular, very popular, or viral. To define these three levels of hotness,
we run simulations with YouTube traces, collected the distribution of replicas
creation in milliseconds, and split it in three nearly equal parts by observing the
66-percentile and 33-percentile inter-creation time for new replicas. This means
that the higher is the frequency of replica creation, the hotter is the video, and
the higher is the ranking position. Now, collected data suit model’s definitions
well.
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6 Evaluation

The utmost goal of our performance evaluation is two-fold: (i) measure the accu-
racy of our learning model in ranking Internet videos in order of hotness, and
(ii) evaluate the performance of our replication scheme in meeting viewers’ expec-
tations in peer-assisted VoD systems. Further details about evaluation set-up are
available in Sect. 5.

6.1 Performance Evaluation Metrics

We aim to evaluate the performance of two main WiseReplica modules: machine-
learned ranking and replication strategy. Hence we group evaluation metrics as
follows:

Machine-Learned Ranking Accuracy. We adopt the normalized Discounted
Cumulative Gain (nDCG) criterion as the main evaluation metric for our learn-
ing model. nDCG is a standard quality measure in information retrieval, espe-
cially for Web search [19,22]. We implement DCG measure proposed by Burges
et al. [8]. Therefore, DCG is defined as DCGL =

∑L
i=1

2F (i)−1
log2(1+i) , where L is the

global set of ranked videos, and F (i) is the rank position of ith video. To com-
pute nDCG, we divide DCG measure by the idealized DCG with perfect order of
the set L. Thus, the perfect model scores 1. Unlike typical information retrieval
problems, as a ranking of web content, our model does not have the notion of
query. Instead, we rely on nDCG robustness to measure the performance of our
learning model as a global ranking problem. Since the ranking problem shares
properties with both classification and regression problems, we compare nDCG
to other three popular machine learning metrics: the mean square error, a stan-
dard metric for regressions; precision, for classification; and a less robust, well-
known variant of nDCG, namely in this work nDCG(2), described by Croft et al.
in [12]. We evaluate three different state-of-the-art ensemble learning methods
available in Scikit-learn library: Random Forest, Extremely Random-

ized Trees, and Gradient Tree Boosting. Moreover, we report briefly on
the sample size for learning, number of estimators or learners of ensemble meth-
ods, measurements or features importance, and the computational overhead of
our model, including memory usage and computation time for prediction.

Metrics for Replication Strategies in Peer-Assisted VoD Systems. Ass-
uming that content and CDN providers are committed to enforcing bitrate as
main QoS metric through SLA contracts, we consider SLA violation as the
primary performance metric. Thus, a SLA violation happens whenever the peer-
assisted VoD system does not provide the minimum average bitrate for prevent-
ing rebuffering. This measures the WiseReplica capacity of meeting consumers’
expectations. We also investigate the impact of our replication scheme using
storage domains in peer-assisted VoD systems. To this end, our evaluation met-
rics are network and storage usage. Finally, we compare WiseReplica results
with a non-collaborative caching and the Oracle-like assumption, described in
Subsect. 5.3.
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6.2 Fitting and Measuring the Accuracy of Our Ranking Model

The evaluation of our learning model comprises: ensemble method selection,
number of estimators, sample size for learning, and inputs’ relative importance.
In this subsection, we aim to evaluate the most important settings and tune
our model towards higher accuracy, using the learning framework described in
Subsect. 3.3.

Selecting and Fitting an Ensemble Method. Ensemble methods have
become very popular in statistical learning. Their algorithms combine several
estimators or week learners to provide robust learning models and prevent
overfitting. We fit and evaluate our model with three methods from Scikit-

learn library: Random Forest(RF), Extremely Randomized Trees(ET),
and Gradient Tree Boosting(GB). We consider two distinct samples with
124,000 lines each, one for training and other for testing. We set to 10 the
number of estimators as a common setting. All other parameters have default
settings. Based on four metrics detailed on Subsect. 6.1, Random Forest fits
our model better. Figure 5 depicts three of these metrics. Random Forest per-
forms particularly well in nDCG score, the main metric for ranking problems.
While Extremely Randomized Trees and Gradient Tree Boosting score
0.9126 and 0.4128 respectively, Random Forest scores 0.9594. In terms of pre-
cision, Random Forest slightly better, with a score of 0.9922. Extremely

Randomized Trees scores 0.9899, and Gradient Tree Boosting scores
0.9502. It also outperforms the other two methods regarding the mean square
error metric, scoring 0.0094 compared to 0.0122 with Extremely Random-

ized Trees and 0.1021 with Gradient Tree Boosting. nDCG(2) metric

Fig. 5. Ensemble methods evaluation:
Random Forest(RF), Gradient

Tree Boosting(GB) and Extremely

Randomized Trees(ET).

Fig. 6. Overhead for different number of
estimators of Random Forest.
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confirms these results. Therefore, we select Random Forest method for imple-
menting our prediction model and nDCG as the key accuracy metric for ranking
predictions.

Adjusting the Number of Estimators to Learn. According to Friedman
et al., Random Forest performs predictions by building a collection of de-
correlated trees, namely estimators, and then averages them. We investigated
the impact of the number of estimators in ranking accuracy, memory and com-
putation time. We varied the number of estimators progressively from 10 to
1000, with the same previous samples. Results show that the number of estima-
tors has a negligible impact in the accuracy of our model. While a model with
10 estimators scores 0.9594, 1000 scores 0.9569, slightly worse. One reason for
this might be the number of inputs, relatively small, that is likely to require
a small number of estimators. Yet, the number of estimators impacts on the
model overhead, specially for computation time. As depicted in Fig. 6, the com-
putation time ranges from 0.3 ms with 10 estimators to almost 26 ms with 1000
ones. Although the worst case still represents low overhead, the lower the better.
Memory overhead is rather negligible, ranging from 30 to 32 MB. Overall, our
model has a quite low overhead, suitable for going online in large peer-assisted
VoD systems. Since there is no evidence to increase the number of estimators,
we keep 10 estimators as a default, fair setting.

Evaluating Bigger Samples for Fitting the Model. Towards a higher
accuracy, we evaluated bigger samples for fitting our prediction model in its
learning phase, described in Subsect. 3.3. We collected more information by run-
ning longer simulations. As expected, Fig. 7 confirms that we improve accuracy
through bigger samples. The improvement in accuracy was slight, about 0.03 as
we use a sample size almost six times bigger, i.e. 683,000. It is quite important to
highlight, though, that this has no impact on computation time of predictions.
Thus, we use the biggest sample for the remaining evaluations.

Analysing the Relative Importance of Model’s Inputs. We were par-
ticularly interested in evaluating the contribution of each input of our model,
described in Subsect. 3.2. Scikit-learn library allows us to measure the relative
importance of each input for predicting the ranking position using the Random

Forest method. Figure 8 highlights the relative importance for all 10 inputs
of our ranking model. The two most relevant inputs are the current number of
viewers and network availability. These inputs alone account for 99.6 % of the
all model’s accuracy. It seems quite reasonable, since the former measures the
demand for a video and the later depicts the offer of network resources, the main
system feature for enforcing average bitrate. Based on the analysis of the current
datasets, the remaining eight inputs are less important to the ranking model’s
accuracy. Surprisingly, the number of replicas, current network load, and video
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Fig. 7. Accuracy with different sample
sizes.

Fig. 8. Relative importance to ranking
of the 10 model’s inputs.

size seem to be useless to our model. It is likely that network availability is a
particularly good measurement, making these eight inputs rather redundant. For
simplicity, we include all inputs in the rest of the work. This is harmless for the
model’s accuracy.

6.3 Evaluating Replication Strategies in Peer-Assisted VoD
Systems

In this subsection we analyse the replication strategy used in WiseReplica. First,
we evaluate four simple replication policies. Then, we compare WiseReplica with
a non-collaborative caching and Oracle-like benchmark replication approach,
both described in Subsect. 5.3. We evaluate their capacity to meet consumers’
expectation by observing the number of violations. In addition, we compare their
resource allocation performance regarding network and storage usage.

Enforcing Simple Replication Policies on Ranked VoD. For the three
highest rank position, WiseReplica enforces a replica creation policy, described
in Subsect. 4.2. It defines the replication degree growth factor. Considering the
smallest evaluated system load (with mean video size of 20 MB), we analyse
four simple creation policies, namely uniform, linear, quadratic, and exponen-
tial. Table 3 shows the number of violations by varying B from 2 to 6. Overall,
creation policies that take into account the rank positions, i.e. linear, quadratic,
and exponential, performed better. Results show that there is relatively small
difference for B ≥ 3, suggesting that our ranking model reacts promptly to modi-
fications on network availability, preventing over-replication. However, for B ≥ 5,
it appears that replication increases the network load system load, causing few
more violations. We selected the linear policy with B = 4 that seems to be the
most resilient towards proper resource allocation, providing a fair replication
degree growth factor.
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Table 3. Replication policies.

Load Resiliency. A good replication strategy must cope with changes on the
system load. We vary the global load of the system by changing the mean video
size, described in Subsect. 5.1. Assuming the three mean video sizes, namely
20 MB, 30 MB and 40 MB, caching had 1814, 3864, and 7049 violations respec-
tively, while WiseReplica had only 6, 77, and 106. Figure 9 compares the number
of violations using WiseReplica and a non-collaborative caching. As the load of
the system increases, concurrency in bitrate allocation also increases, causing
more violations. WiseReplica outperforms caching mostly because it predicts
and prevents useless replication. Therefore, we set to the highest evaluated sys-
tem load, 40 MB, as the default mean video size workload setting.

Benefits of Prediction on Storage Usage. We aim to adapt the number
of replicas to the number of views of a video, especially for the most popular
ones. Figure 10 plots the maximum number of replicas for the 1 % most popular
videos. Using caching, the maximum number of replicas is high, ranging from 816
to 1367. The Oracle-like assumption allows to decrease significantly the lower
and upper limits, to 10 and 190. WiseReplica also reduces the maximum replica
range, which is from 19 to 160. More interestingly, the shape of the replication

Fig. 9. Mean video size. Higher loads increase the concurrence in network resources,
as a result, more violations.
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curves of WiseReplica and Oracle-like are quite similar indeed. It confirms that
our predictions are accurate, and that a simple replication policy works properly.

Reducing the number of replicas implies that the systems requires less storage
for replication. Figure 11 shows storage usage for replicas by replication scheme.
Although WiseReplica utilizes more storage than Oracle-like, its usage remains
two orders of magnitude smaller than a non-collaborative caching. The maximum
storage usage for Oracle-like, WiseReplica, and a non-collaborative caching were
34, 85, and 7921 GB respectively. WiseReplica creates more replicas than Oracle-
like because it does not rely on bandwidth reservation to prevent violations. Yet,
WiseReplica maintains replicas efficiently, keeping storage usage very low, and
making cache replacement policies unnecessary. This suggests that the LRU
policy, which would eventually be enforced in peers cache, has no impact on the
WiseReplica performance.

Enhancing Bitrate Provision for Meeting Consumers’ Expectation.
WiseReplica performance is also quite similar to Oracle-like regarding preventing
violations. Each point of the Fig. 12 represents the number of SLA violations for
intervals of five minutes. Overall, caching caused 7049 violations affecting 86 %
of all viewers, WiseReplica had just 106 violations, and Oracle-like, evidently,
none. Compared to caching, WiseReplica prevents nearly 99 % of violations.
It copes with violations by (i) creating new replicas for hot videos only, and
(ii) adapting the number of replicas according to the rank position. Vertical
lines in Fig. 12 represent the first access to the 10 videos with the worst content
provision through caching. They account for 80.62 % of all caching violations.
The appearance of these videos puts the system under heavy load, which makes
caching fail to prevent violations.

Figure 13 depicts the average bitrate for viewers of the 10 videos with the
worst content provision using caching. When caching was under heavy load,

Fig. 10. The maximum number of
replicas for the 1 % most popular
videos.

Fig. 11. Storage usage for replication.
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Fig. 12. SLA violations. Vertical lines
highlight the first view to 10 videos
with the worst content provision using
caching.

Fig. 13. Bitrate for viewers of the 10
most popular videos under heavy load.

half of viewers experienced a very low bitrate, ranging between 230 Kbps and
2575 Kbps. The mean bitrate with caching was 43 Mbps. On average, Wis-
eReplica improved this bitrate by roughly 85 % under heavy load. Actually it
performs almost as well as the Oracle-like assumption, that improved bitrate
provision by 93 %. These finds suggest that WiseReplica largely outperforms
caching, fairly meeting consumers’ expectations under heavy load conditions.

7 Related Work

Our related work is two-fold: Internet videos and adaptive replication schemes.

Internet videos: Recent studies [14,33] have drawn attention to reach a better
understanding of Internet videos properties, such as popularity growth. They
point out that well-known popularity characteristics are applicable to multime-
dia content. For instance, Internet videos popularity distribution follows power
law, and popularity bursts have a short duration and are quite likely to hap-
pen just after the content publication. Dobrian et al. [13] shed some light on
the performance of Internet videos provision on CDNs. They show that average
bitrate plays an important role in videos availability. A hybrid solution between
CDNs and P2P is presented by Mansy et al. [23]. Their purpose is to model and
analyze a live video system and one of their main concerns is to adapt bitrate for
guarantee user satisfaction. Adhikari et al. [1] work described the YouTube video
delivery system through measurements of DNS resolutions and video playback
traces. One of their findings is that over a globally distributed network (Planet-
Lab) most part of the nodes have a nearby Youtube video cache server to delivery
the video data. Moreover, Brodersen et al. [6] presented a detailed study over the
strong connection between popularity and geographic locality of Youtube videos.
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These facts endure our decision of a locality aware solution for infrastructure.
Liu et al. [21] make a case for a video control plane that can use a global view
of client and network conditions to dynamically optimize the video delivery in
order to provide a high quality viewing experience despite an unreliable delivery
infrastructure. However, the granularity of their server selection mechanism is at
a CDN, ignoring edge resources. WiseReplica addresses this issue by adapting
replication close to the viewers. Thus, WiseReplica can be play an important
role in collaborating with an Internet control plane.

Adaptive replication schemes: Non-collaborative caching remains the sim-
plest approach to provide popularity-aware replication of web content through
cache replacement policies [20]. However, we showed when we adapt the number
of replicas according to the Internet video popularity properly, cache replacement
policy becomes redundant. EAD [27] and Skute [4] adapt the number of replicas
by using a cost-benefit approach over decentralized and structured P2P sys-
tems. EAD creates and deletes replicas throughout the query path with regard
to object hit rate using an exponential moving average technique. Similarly,
Skute provides a replication management scheme that evaluates replicas price
and revenue across different geographic locations. Despite presenting an efficient
framework for replication, they provide an inaccurate bitrate provision, hence
inappropriate for high-quality video delivery. WiseReplica copes with this issue
by analysing the request arrival process, performing accurate predictions about
the ranking of Internet videos, and maintaining replication degree accordingly.

8 Conclusions

In this work, we presented WiseReplica, a SLA-based, adaptive replication scheme
for meeting customers’ expectations and enhancing resource allocation in peer-
assisted VoD systems. To adapt replication, WiseReplica relies on a prediction
model for ranking Internet videos in order of demand. Our intuitive model is flex-
ible, and can learn from different sources and big amounts of data, providing a
robust framework for controlling VoD resource allocation. Simulations using You
Tube traces suggest that our ranking predictions of videos are important to enha-
nce video delivery in peer-assisted VoD systems, allowing us to self-adapt replica-
tion degree to video demand properly. WiseReplica increases the average bitrate
provision by roughly 85 %, contributing decisively to enhance viewing experience
of users. Our future work will mainly cover a proof-of-concept prototype for eval-
uating WiseReplica in a real testbed.
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