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Abstract—Scale-out storage systems (SoSS) have become in-
creasingly important for meeting availability requirements of web
services in cloud platforms. To enhance data availability, SoSS
rely on a variety of built-in fault-tolerant mechanisms, including
replication, redundant network topologies, advanced request
scheduling, and other failover techniques. However, performance
issues in cloud services still remain one of the main causes of
discontentment among their tenants. In this paper, we propose
an anomaly detection approach for SoSS that predicts cloud
anomalies caused by memory and network faults. To evaluate
our prediction model, we built a testbed simulating a virtual
data center using VMware. Experimental results confirm that
the injected faults are likely to undermine the data availability in
SoSS. They suggest that although unsupervised learning has been
the most common method for anomaly detection, a supervised-
based implementation of the same model reduces the false positive
rate by roughly 10%. Our analysis also points out that probing
SoSS-specific monitoring data at the VM-level contributes to
improve the anomaly prediction efficiency.

I. INTRODUCTION

Scale-out storage systems (SoSS) have become increas-
ingly important to provide dependable web applications in
cloud platforms. In a cloud-friendly data center environment,
back-end data stores of multiple users, or tenants, share re-
sources in order to provide horizontal scalability. Per-tenant
data store is partitioned and replicated throughout different
storage service instances for improving its scalability and
availability. At the virtual machine (VM) level, a service
instance can also share virtualized resources among different
data store replicas to improve resource allocation.These SoSS
allow cloud providers to enhance the platform utilization and to
reduce costs. Popular SoSS include key-value stores, document
stores, distributed relational databases, and block storage. So
far, they have been successfully used for numerous web
applications, such as threaded web conversations and posts,
distributed monitoring systems, big data stores, photo tagging,
user status updates, sessions and profiles.

Yet performance issues in distributed systems are still
major causes of discontent among cloud tenants [17], [26].
The root cause of unwanted performance variations of SoSS
in cloud environments may depend on a wide range of uncorre-
lated issues, including systems permanent and transient faults,
configuration errors, software bugs, limping hardware [9], to
name a few. These performance issues can be grouped into
two broad classes: failures and resource allocation problems.
Failures in large SoSS are likely to be common. Although
their failover mechanisms handle fail-stop failures successfully,

many other failures may remain unnoticed by fault-tolerant
mechanisms. For instance, Do et al. [9] found that a single
limping network interface can cause a three orders of magni-
tude execution slowdown in distributed key-value data stores.
Similarly, as many consolidated VMs must compete for shared
resources in a single physical host, efficient resource allocation
in cloud platforms becomes quite challenging. Actually, this
may result in contentions of hosts resources such as main mem-
ory and network bandwidth leading to increasing completion
times of operations [27], [15]. Therefore, we believe that cloud
providers must be able to uncover these performance issues in
order to enhance the dependability of SoSS.

Anomaly detection has been a widely used technique to
automatically identify performance issues in large-scale dis-
tributed systems [6]. Most of the anomaly detection approaches
for distributed systems are based on a unsupervised learning
method. To boost their performance, they rely on data mining
techniques [20], [14], [19], [13]. Yet prediction efficiency
remains the main drawback of this method [21], as it is statisti-
cally difficult to ascertain the quality of inferences drawn from
the predictions of unsupervised learning algorithms. Moreover,
to the best of our knowledge, there is not yet a precise analysis
of the prediction efficiency of anomaly detection approaches
in SoSS. In particular, none has analysed the predictability of
anomalies in SoSS that use replication and load balancing to
enhance data availability.

This work introduces an anomaly detection approach for
SoSS. We are particularly interested in identifying anomalous
VMs with high prediction efficiency. To evaluate our anomaly
detection approach, we built a testbed simulating a virtual data
center using VMware. In this testbed, we deployed a cluster
of VMs to run MongoDB [2], the most popular document
store nowadays1. We injected memory and network faults
in VMs to provoke cloud anomalies, then we performed a
precise analysis of the predictability of these anomalies. Our
analysis was threefold. First, we assessed the impact of cloud
anomalies on a MongoDB cluster. Then, we compared the
efficiency of our prediction model implemented as supervised
and unsupervised learning methods. Finally, we evaluated the
quality of different monitoring data with respect to the probing
sources, particularly whether it is worth monitoring directly
VMs operating systems and SoSS utilization counters.

Experimental results suggest that the injected faults are
likely to undermine the data availability of a MongoDB cluster

1http://db-engines.com/en/ranking

http://db-engines.com/en/ranking


workload

fault
injection

SoSS

monitoring

anomaly
detection

Fig. 1: Methodology overview and the functional blocks.

regardless of its built-in fault-tolerant mechanisms, notably
replication and load balancing of queries. They also high-
light that a supervised learning-based implementation of our
prediction model performs much better than an unsupervised
one in predicting these anomalies, reducing by roughly 10%
the false positive rate. Our findings point out that collecting
SoSS-specific monitoring data directly from VMs provides a
worthwhile improvement in the prediction efficiency of our
anomaly detection approach.

II. ANOMALY DETECTION APPROACH

In this section, we describe our approach to enhance the
capacity of SoSS to detct anomalies. In particular, we define
our anomaly prediction model that classifies VMs in anoma-
lous or normal based on the monitoring data of SoSS. Figure 1
provides a high-level overview of our approach. It introduces
the five main functional blocks of our approach, namely SoSS,
workload, fault injection, monitoring, and anomaly detection.
In the remaining of the section, we detail each one of these
blocks.

A. SoSS

SoSS is the subject of our anomaly detection study. Figure 2
highlights the main components a SoSS and the interactions
with the workload. To enhance data availability for cloud
services, SoSS provides scalable and fault-tolerant data storage.
Such systems offer scalable storage service by allowing cloud
operators to evenly split data in L partitions or shards across a
cluster of VMs. To increase the storage capacity of the cluster,
operators may add nodes as the system run. Partition replica-
tion is the most common mechanism to enforce data durability
and availability in SoSS. Each partition has a predefined num-
ber of replicas K+1, which allows the system to tolerate up to
K VM failures. Copies of the same partition form the so-called
replica set. Depending on the scheme to maintain replicas,
replication is divided in two broad groups: primary/secondary
and multi-primary schemes. Essentially they differ on how
requests that modify data are handled. Our approach takes into
account both schemes. In addition, we assume that SoSS rely
on load balancing throughout replicas in order to limit the
impact of cloud anomalies on a cluster.

B. Workload

Workload functional block loads a SoSS cluster with data
and runs the workload for evaluation purposes. Through this
block, we can define workload settings, such as document size
distribution, the rate of query per second, and the distribution
popularity of documents. As depicted in Figure 2, the workload
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Fig. 2: SoSS architecture and workload.

allows us to generate four types of queries, namely create, read,
update, and delete (CRUD) queries.

C. Fault Injection

Fault injection allows us to emulate malfunctioning and
errors events in cloud environments to cause anomalous be-
haviours in the SoSS. We investigate the impact of faults that
are hard to identify and degrade significantly the performance
of our SoSS. Our goal is to provide a collection of faulty
behaviours that are likely to occur in cloud environments and
that existing fault-tolerant mechanisms may fail to deal with. In
this work, we focus on the following two categories of faults.

Network faults. Communication issues in distributed systems
are common, and they have a significant impact on the perfor-
mance of SoSS. To analyse their impact, we inject three types
of network faults, namely packet loss, network latency, and
limping network. Packet loss and network latency allowed us
to emulate common interconnection issues of cloud platforms,
such as network partition in data center networks. Limping net-
work is intended to reproduce networks’ anomalous behaviours
previously observed by Do et al. [9]. This fault emulates a
limping network interface, whose actual transfer rate does not
comply with the manufacturer’s specification.

Memory faults. As the price of main memory continues to
drop, distributed data store operators have been encouraged to
fit data to main memory in order to improve performance [25].
Hence, faults in main memory have become increasingly
harmful to these systems. We intend to emulate faults related
to misuse of memory. At the VM level, this kind of fault allows
us to make arbitrary amounts of main memory inaccessible to
a SoSS. The aim is to provoke an abnormal functioning of a
SoSS due to an unexpected utilisation of main memory. Con-
sequently, there will be less main memory available and more
unwanted, costly disk I/O. A typical example of this fault is a
VM running out of memory due to a misconfiguration, memory
leaking, overloading, or an unbalanced resource allocation.

D. Monitoring

Monitoring functional block allows us to collect data that
quantifies the utilization of the cloud resources for the SoSS.
To collect our datasets, we consider the monitoring system
depicted in Figure 3. The monitoring system (i) collects
measurements from the SoSS through probing agents; (ii)
gathers and stores these measurements in a rrd file; and (iii)
processes these files periodically to create our raw dataset
in a relational database. To characterize the state of a VM,
this system collects data from the monitoring counters of
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the storage service, like number of served queries, and from
the cloud infrastructure, such as CPU and memory usage.
Probing agents collect SoSS-specific monitoring data directly
from the VMs, and generic activity monitoring data from the
hypervisors or VMs.

E. Anomaly Detection

This is the main functional block of this study. We briefly
introduce the main statistical learning methods that are im-
plemented and compared in this work. Then we describe the
prediction model. Finally, we present the metrics to evaluate
the efficiency of our anomaly detection approach.

1) Statistical learning methods: Statistical learning is about
learning from seen data in order to predict unseen data with
minimal error. Data comprises measurements represented by
a feature vector x with a fixed number of dimensions d (x ∈
X ⊂ Rd) from the input space X . There are two ways of
learning from data: supervised and unsupervised learning.

In supervised learning, each measurement or input is cou-
pled with a y, a label, from the output space Y . To learn,
we have N pairs (x, y) drawn independent and identically
distributed (i.i.d.) from a fixed but unknown joint probability
density function Pr(X,Y ). This is true for both training
and testing datasets. For instance, we consider the training
dataset S = {xi, yi}Ni=1 of N pairs (x, y). From this dataset,
the supervised learning algorithm searches for a function
f : X → R in a fixed function class F . State-of-the-art
algorithms, such as support vector machines (SVM) [18] or
Adaboost [11], aim to find f? in F with the lowest empirical
risk defined as:

f? ∈ argmin
f∈F

remp(f)

where remp(f) = 1
N

∑N
i=1 I{f(x)6=yi} is computed over the

training set, and I{.} is the indicator function which returns 1
if the predicate {.} is true and 0 otherwise.

In unsupervised learning, we have N unlabelled samples
(x1, x2, . . . xN ) of a random d-vector X having probability
density function Pr(X). Unlike supervised learning, there is
no outputs to learn from. Instead, we are interested in inferring
the properties of function Pr(X). This allows us to have
insights into how the data is organized or clustered.

The unsupervised learning method allows us to make fewer
assumptions about data, since they do not require labelled
training datasets. To boost their efficiency, they rely on data
mining techniques [20], [14], [19], [13]. Yet prediction perfor-
mance remains the main drawback of these approaches [21], as
it is statistically difficult to ascertain the quality of inferences
drawn from the predictions of unsupervised learning method.

With supervised learning, however, there is a clear measure of
success, that is quantified by the expected loss over the joint
probability density function Pr(X,Y ) [18].

2) Anomaly prediction model: The goal of our prediction
model is to detect anomalies in VMs that are likely to
undermine the performance of SoSS. We intend to compare
the prediction efficiency of two implementations of this model,
as a supervised and as a unsupervised learning method. In
our model, x represents a VM. The model classifies VMs in
anomalous or normal with respect to their current state. The
output of our model is defined as follows.

Ĝ(x) =

{
1 if a VM is behaving anomalously.
−1 if a VM is behaving normally.

This model makes predictions based on monitoring dataset,
described in Subsection II-D. Monitoring dataset is prepro-
cessed according to the statistical learning method to be per-
formed. With supervised learning, we add labels to the training
dataset. After preprocessing monitoring datasets, we set to 1
labels of input measurements of faulty VMs (Subsection II-C)
in the training dataset. Hence, each line of our datasets for
anomaly detection has d inputs and one output label that
indicates if a VM behaves anomalously or not. This procedure
is slightly different for the unsupervised learning method.
Since it does not require labelled data to learn, its training
dataset has d inputs with data from VMs where faults were not
injected and behaved normally. To test or validate our model as
an unsupervised learning method, the preprocessing procedure
is the same as that for supervised learning one. We detail the
use of our dataset for predictions in Subsection IV-B.

3) Prediction efficiency metric: We evaluate the efficiency
of our binary classifier with respect to two different statistical
learning methods using average precision. Average precision
is a single-value efficiency metric widely used in Information
Retrieval [18]. We chose this metric because it combines two
other key efficiency metrics: precision and recall. Precision is
the rate of anomalous events detected successfully over the
total number of events. Recall measures the rate of anomalous
events detected successfully over the total number of ground
truth anomalous events. To find the average precision of a
binary classifier, we compute its precision (p) averaged across
all values of recall (r) between 0 and 1. It is defined as follows:

average precision =

∫ 1

0

p(r) dr (1)

Actually, the average precision corresponds to the area un-
der the precision-recall curve. Finally, we define the prediction
error of a learning model as follows:

prediction error = 1− average precision (2)

III. EXPERIMENTAL SET-UP

This section details the experimental set-up to measure the
efficiency of our anomaly detection approach.



A. Testbed Settings for Simulating a Virtual Data Center

Our experimental testbed consists of two Dell PowerEdge
R620 hosts, namely target and experimentation hosts. Each
host has two Xeon E5-2660 2.2 GHz processors, 64 GB
of memory, and two 130 GB SATA disks. The hosts were
connected by Gbit Ethernet. These resources are shared among
the VMs and services running on each host. We chose VMware
as the virtualization technology and ESXi 5.1.0 as hypervisor.
Figure 4 depicts our virtual data center for experimentations,
highlighting how we consolidated VMs across hosts.

Fig. 4: Experimental testbed.

The target host runs our SoSS, monitoring agents, and
our fault injection tools whereas experimentation host runs
everything else, notably the workload, monitoring system, and
the prototype of our anomaly detection approach. By grouping
our SoSS cluster along with the fault injection tools in a single
host, we aim to reduce any unwanted noise or load on the
monitoring data of storage nodes.

VMs were consolidated according to their profiles. Profiles
are loosely based on functional block of our approach, detailed
in Section II. They essentially differ in main memory, disk,
and, particularly, network capacity. To prevent a misleading
network utilization, we connected storage nodes to 100Mbps
virtual network. The workload functional block has two VMs
with identical settings with larger amounts of main memory,
which allows us to control workload settings. The VM for
monitoring requires a bigger disk, just like anomaly detection’s
VM, that runs statistical learning algorithms over big amounts
of monitoring data.

B. SoSS and Workload Settings

As SoSS, we chose MongoDB (2.4.8 release) [2]. We
consolidated in our experimental testbed a MongoDB cluster
following the SoSS definitions of Subsection II-A. In our
cluster, we set the replication factor K to 1 and the number
of partitions L to 2. We consolidate five VMs to deploy our
cluster, query router and four document stores. Data is evenly
distributed by a query router of MongoDB throughout the
two partitions using the hash code of documents’ keys. In
MongoDB, there is a single primary replica on each replica set.
Replicas regularly exchange heartbeat messages to elect the
primary copies as failures occur. We used the default timeout
setting of 10 seconds for primary replica election. This set-up
forms a small but resilient, fault-tolerant SoSS, which allows
us to measure the impact of different faulty scenarios.

We investigate the performance of MongoDB using the
Yahoo! Cloud Serving Benchmark (YCSB) [8], a workload
generator and benchmark tool for SoSS. In a preliminary
setup, we use YCSB to load documents whose size varies
from 1KB to 3KB. Once the database is loaded, we set-up
YCSB to generate a mostly-read workload. The popularity of
documents follows a Zipf-like distribution. We evaluated the
MongoDB performance in serving an average throughput of
5000 queries per second. YCSB provides two key metrics to
evaluate the performance of SoSS, average throughput rate and
99th percentile latency. In a fault-free scenario, our MongoDB
cluster serves the expected 5000 queries per second with a 99th
percentile latency smaller than 12 milliseconds.

C. Fault Injection Campaigns

We developed injection scripts to provoke cloud anomalies
and to investigate the impact of a faulty cloud environment in
our MongoDB cluster. These scripts allow us to inject network
and memory faults detailed in Subsection II-C. We imple-
mented network faults using Dummynet [5], a widely used link
emulator. For memory faults, we implemented Python scripts
that allocated arbitrary amounts of main memory. Table I
summarizes the main characteristics of our fault injection cam-
paigns. We can assign 10 intensity values or levels to a fault.
Although the range and distribution of fault intensities had
been chosen arbitrarily, they provide a fair insight about how
these faults could lead to anomalies of cloud environments.
Our scripts have three parameters to define a single injection:
type of fault, intensity, and duration. For each VM hosting
a MongoDB document store, we injected a series of faults
including all types and intensities. Between two injections,
script procedures ensure that the MongoDB cluster recovered
completely from faults. We did not inject faults or different
fault intensities concurrently.

D. Monitoring System and Datasets for Analysis

Our monitoring system, whose design is described in
Subsection II-D, was built on top of Ganglia [22], a scalable
distributed monitoring system for high performance computing
systems. We deployed a Ganglia agent on each hypervisor and
VM. Every 30 seconds, they collect data about the utilization
of the cloud resources by the SoSS. These measurements,
including anomaly injection information, are organized by VM
and stored in a relational database every minute. To assess
the effect of different probing sources on anomaly detection
of VMs, measurements are organized in three source groups,
namely A, B, and C, as described in Table II.

TABLE II: Probing sources for monitoring.

Label Source Agent deployment Measurements
A SoSS VM 16
B TCP network layer VM 21
C systat of VMs or hypervisor VM or hypervisor 23

The behaviour of a VM of a SoSS cluster is characterized
by these 60 measurements (i.e., d = 60). Monitoring sources
have a sightly similar number of measurements. They allow
us to evaluate the trade-off between collecting generic VM-
level data and collecting service-level data. Sources A and



TABLE I: Fault injection campaigns.

Fault type Duration (days) Unit Intensity levels
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Packet loss 3 % 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0
Network latency 3 ms. 8 16 24 32 40 48 56 64 72 80

Limping network 3 Mbps 32 10 3.2 1.0 0.32 0.1 0.032 0.01 0.0032 0.001
Misuse of memory 3 % 70 73 76 79 82 85 88 91 94 97
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Fig. 5: Anomaly detection module for SoSS.

B require a probing agent running inside the VM, whereas
measurements from source C come from an agent probing
directly the hypervisor monitoring counter. Among the probing
sources, only source A is specific to the target SoSS. The list
of all 60 measurements, so-called anomaly detection inputs,
is available online2. Overall, our dataset for analysis has
50,000 samples based on VMs, including 15,000 one-minute
anomalous samples.

E. Anomaly Detection Implementation

The prototype of our prediction model is based on sup-
port vector machine (SVM) learning algorithm [18]. Our
anomaly detection module was implemented using Scikit-learn
library [23].

We designed and implemented a anomaly detection (AD)
module to identify anomalies in SoSS, depicted in Figure 5.
The AD has two operating phases: (i) learning and (ii)
prediction. Each phase has its own dataset collected by the
monitoring system. In the learning phase, monitoring data is
preprocessed to generate the training dataset. Then this training
dataset is fed to the AD module, whose functioning depends
on the implemented statistical learning method. If the AD is
based on a supervised learning method, it will identify normal
and anomalous patterns, otherwise, the AD is based on an
unsupervised learning method, it characterizes normal patterns
only. Once the learning phase has been accomplished, AD can
use its learning module in a prediction phase, as indicated in
the right-hand side of Figure 5. In this phase, inputs come
directly from measurements of the monitoring system, that
permit classifying the behaviour of a VM into anomalous or
normal.

IV. EVALUATION RESULTS

In this section, we analyse the impact of the injected faults
in MongoDB cluster, we compare the prediction efficiency of
these faults for two implementations of our model, and we
assess the quality of information from the different sources of
monitoring data for anomaly predictions.

2http://homepages.laas.fr/gdasilva/datasets/oltp mongodb.info

A. Measuring the impact of faults on SoSS

Figures 6a and 6b show the impact of our fault injection
campaigns, detailed in Subsection III-C. From our experimen-
tal results, we highlight the following observations.

• Impact on the average throughput rate. Our Mon-
goDB cluster served 5000 queries per second before
injecting faults. Under faults, the average throughput
could be reduced by more than two thirds as a single
storage node has a limping network interface [9].
The impact of increasing network latency fault was
considerably high. According to its intensity level,
the average throughput ranged from 4976 to 2817
queries per second. We also observed that the impact
of packet loss on the average throughput increased
smoothly. It remained stable as the rate of packet
loss was higher than 7.2%. Considering the average
throughput rate, MongoDB seems to be very resilient
against memory faults. For instance, for a memory
fault intensity as high as 72% of all main memory
(i.e., only 28% of main memory in available for the
MongoDB instance), there was no impact on the av-
erage performance. Surprisingly, we started observing
a performance degradation of its average throughput
when less than a quarter of the main memory was
available for all other running processes of the VM.

• Impact on the 99th percentile latency. In a fault-free
scenario, we observed a 99th percentile latency of 12
milliseconds. When we inject a limping network fault,
this metric reached a peak of 389 milliseconds, in
other words, a 32-fold increase. Similar to the impact
on average throughput, limping network seems to be
the worst type of fault. However, as we shrank the
available bandwidth to values lower than 100Kbit/s
(a limping network fault with an intensity of 0.6),
MongoDB identifies the faulty node and overcomes
the problem by sending queries to another replica. It
confirms how important network resources are for this
kind of system.

Overall, all faults undermined the performance of our
MongoDB cluster, despite the load balancing of queries and
management of the liveness of replicas. We observed these
faults had a higher impact on the 99th percentile latency.

B. Prediction about Anomalies in Cloud Environments

The evaluation of our prediction model has three operating
phases: training, cross-validation, and prediction. While train-
ing and prediction correspond exactly to the two phases of
our anomaly detection framework, detailed in Subsection III-E,
cross-validation actually is a preliminary phase that helps us

http://homepages.laas.fr/gdasilva/datasets/oltp_mongodb.info
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Fig. 6: The impact of cloud anomalies caused by network and memory faults on the data availability of MongoDB.

to design our prediction model, e.g. to evaluate inputs and
to select a learning method. We evaluate the efficiency of
our anomaly detection framework using the dataset described
in Subsection II-D. We split our dataset of 50,000 samples
(described in Subsection III-D) in three parts: 60% for training
dataset, 20% for cross-validation, and the remaining 20% for
prediction. We remind that our model predicts a positive value,
1, whenever an anomalous VM is detected, otherwise -1.

C. Cross-validation with Supervised and Unsupervised Learn-
ing Approaches

Cross-validation is an essential procedure to evaluate the
quality of a learning model. In particular, this evaluation step
allows us to verify if our learning model is overfitting or
underfitting. Overfitting is a problem in a statistical learning
method that prevents a model to generalize, in other words, the
model data fitting is too specific. Underfitting has an opposite
effect. If a model suffers from underfitting, it performs poorly,
resulting in a high number of wrong predictions. In both cases,
the model must be improved.

One way to verify overfitting and underfitting is by plotting
prediction error curves of the different learning methods. These
curves help us to choose the “best” learning method. In
our evaluation, the error curves are based on the efficiency
metric defined in Section II-E, average precision (Equation 1)
and prediction error (Equation 2). Moreover, we plot the
error curves as a function of the sample size to verify if
our dataset has enough information for accurate predictions.
Figure 7 depicts the error curves of our anomaly prediction
model using an unsupervised learning and supervised learning
methods. Plots have 20 points each. A point corresponds to the
prediction error with a portion of the datasets. For instance, the
evaluation of the first point takes into account one twentieth of
training dataset and one twentieth of cross-validation dataset.
As the x-axis values increase, datasets become progressively
bigger. The twentieth point contains the entire training and
cross-validation datasets. To compute the prediction error of
a point, we train our model with its respective training dataset
size and we measure error of prediction about its own training
dataset and the cross-validation dataset. These plots allow us
to draw the following conclusions about the models.

• None of them was underfitting. As the sample size

of training and cross-validation datasets increases, the
gap between the prediction error curves of both learn-
ing methods decrease significantly and then remains
unchanged. This means that additional training data
is unlike to help us to reduce prediction error. Our
datasets seem to be large enough for training purposes
of our anomaly detection model.

• Our model was overfitting when implemented as
an unsupervised learning method. Our model per-
formed predictions about anomalies with high predic-
tion error as we used an unsupervised learning-based
implementation. With this approach, prediction errors
were higher than 0.2. When we implemented our
model using a supervised learning method, however, it
did not suffer from overfitting. Actually, we were able
to reduce prediction error of our model to roughly
0.02. This result shows that the supervised-based
implementation of our model generalizes properly and
performs prediction with high efficiency.

To provide a wider view of the efficiency of our model
based on different statistical learning methods, we compute
other prediction efficiency metrics. Figure 8 shows the false
positive and true negative rates of supervised and unsuper-
vised methods. It shows that a supervised learning method is
highly efficient in our context. For instance, for this set of
experiments, it reduces the number of false positives, or VMs
wrongly classified as anomalous, from 0.11 using an unsuper-
vised learning method to almost 0.01 using a supervised learn-
ing method. The smaller is the false positive rate, the easier
is to use predictions to trigger recovery procedures accurately.
Finally, Table III summarizes other performance metrics during
our cross-validation evaluation. This table shows efficiency
values using the entire training and cross-validation datasets.
It allows us to compare the average precision, our main
metric, to other metrics of prediction efficiency. These results
suggest that all efficiency metrics are consistent and confirm
the superiority of the supervised learning method.

D. Measuring the Contribution of Different Monitoring
Sources to Prediction Efficiency

We computed the average precision for all combinations
of our three sources of data monitoring, detailed in Subsec-



0.01

0.06

0.11

0.16

0.21

0.26

0.31

5 50 100 150 200 250 300 350 400 450 500

Dataset size (x100 samples)

P
re

di
ct

io
n 

er
ro

r
Cross−validation
Training

(a) Error curve for supervised learning model.
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(b) Error curve for unsupervised learning model.

Fig. 7: The impact of network and memory faults on the data availability of SoSS.
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Fig. 8: False and true positive rates for two learning methods.

TABLE III: Comparing efficiency metrics for learning meth-
ods.

Learning method
Metric Supervised Unsupervised
Average precision 0.98 0.75
AUC 0.98 0.79
Accuracy 0.99 0.83
Positive precision 0.98 0.72
Negative precision 0.99 0.87
Positive recall 0.98 0.68
Negative recall 0.99 0.69

tion II-D. Our goal was to assess the quality of information
provided by each monitoring source, and how they contribute
to provide high prediction efficiency. To achieve this goal, we
used the supervised learning version of our prediction model,
and we considered the training and the prediction datasets.
We selected inputs for training our model according to the
monitoring sources, namely A, B, and C. Figure 9 presents the
results for different combinations of monitoring sources. If we
consider only the monitoring data that comes from source C,
which includes common VM-level measurements, we achieve
a high prediction efficiency of 0.95. We increase the model
efficiency by 0.03 when we add monitoring information from
TCP-level or data storage usage sources. As any increase in

efficiency contributes to the improvement of SoSS dependabil-
ity, we conclude that including monitoring data from probes
installed inside the VMs is worthwhile.
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Fig. 9: Contribution of different monitoring sources to predic-
tion efficiency.

V. RELATED WORK

Fault tolerance in SoSS. Distributed systems use replication
and advanced request scheduling to improve data availabil-
ity. Ficus [16] and Bayou [24] are data storage that rely
on replication to ensure data availability against fail-stop
failures, but they are not able to deal with transient cloud
failures. Skute [4] provides an adaptive replication scheme
that mitigate the impact of cloud failures. However, it does
not provide mechanisms to ensure high data availability, such
as high throughput and bounded latency. Popular SoSS, like
MongoDB [2], CouchDB [1] and Redis [3], offer high data
availability using an eventual consistency replica system and
enhanced main memory data structures [28]. But, our study
showed that cloud failures, like packet loss and main memory
faults, can undermine considerably their data availability.

Cake [30] offers a scheduling scheme to enforce high-
level data availability requirements for end users. Similarly,
PARDA [15] enforces proportional-share fairness in the access
of data in a storage cluster. Since neither Cake nor PARDA are
designed to identify faulty VMs, our work is complementary
to theirs. Eriksson et al. [10] provide a routing framework
that helps cloud operators to mitigate the impact of network
failures. Alerts from our approach can contribute to enhance
the assessment of network outage risk of their framework.



Anomaly detection in SoSS. Prediction models for anomaly
detection are commonly implemented based on an unsuper-
vised learning method. Liang et al. [20], and Gujrati et al. [14]
as well, provide prediction models based on event logs of
supercomputers to identify platform-wide anomalies, whereas
we are interested in detecting anomalous VMs based on
common data center monitoring data. Chen et al. [7] proposes
an anomaly detection approach for large-scale systems that
improves the prediction efficiency of an entropy-based infor-
mation theory technique by performing a principal component
analysis (PCA) of system inputs. However, this introduces
computational overhead that undermines its scalability and
causes a slowdown in anomaly predictions. While we focus on
detecting a small set of cloud anomalies with high prediction
efficiency, Lan et al. [19] provides a general-purpose anomaly
detection approach that strongly relies on input selection to
enhance prediction efficiency. Similarly, Guan and Fu [13]
performs inputs extraction based on PCA to identify the
most relevant inputs for anomaly detection. Yet, our results
confirm that an unsupervised-based approaches undermine the
prediction efficiency of cloud anomalies.

Guan et al. [12] implement a probabilistic prediction model
based on a supervised learning method. Although their model
allows us to compare the dependability of virtualized and
non-virtualized cloud systems, their results suggest that their
model suffers from poor prediction efficiency when it is used
to predict cloud anomalies. Tan et al. [29] propose general-
purpose prediction model to prevent cloud anomalies. Their su-
pervised learning-based model combines 2-dependent Markov
chain model with the tree-augmented Bayesian networks. But,
the authors did not provide information about the prediction
efficiency and the capacity of generalize of their approach.

VI. CONCLUSION

Web services rely on SoSS to provide content with high
availability. However, we showed that cloud anomalies can
undermine the capacity of these systems to enforce data avail-
ability requirements. In this work, we presented an anomaly
detection approach to enhance the dependability of SoSS
through predictions of cloud anomalies. Our results show that
our approach can efficiently identify anomalous VMs. Al-
though anomaly detection in distributed systems is commonly
implemented based on an unsupervised learning method, we
showed that a supervised learning-based implementation of the
same prediction model reduces the false positive rate by 10%.
We also showed that collecting more specific probing sources
at the VM level improves the detection of anomalous VMs
in SoSS. As future research, we plan to extend our approach
based on our preliminary findings in order to evaluate different
SoSS, under different workloads and a large number of faults.
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