

Université Pierre et Marie Curie – Sorbonne Universités Paris, France LIP6/UPMC/CNRS/INRIA Orange Labs/France Telecom

Predicting Popularity and Adapting Replication of Internet Videos for High-Quality Delivery (with Hermes)

by

Guthemberg Silvestre, Sébastien Monnet, David Buffoni, and Pierre Sens

CIFRE partner:

Orange Labs

ICPADS 2013, Seoul, South Korea 18 December 2013

State-of-the-art

- CDN architectures
 - Infrastructure-based (datacenter): Akamai, Google
 - Hybrid design: NaDa [FP7'11], Echos[SIGCOMM'08]
- SLA
 - Poor content availability: uptime (Amazon S3)
 - Very high content availability: deadline-aware approaches (D3[SIGCOMM'11])
- Content replication
 - Uniform and fixed
 - Adaptive: non-collaborative cache(LRU), EAD [IEEETPDS'10], Skute [ACM SoCC'10]

- Where do we place clients' objects?
- How do we handle edge network devices for object-based storage systems?
- How many replicas per object should the system create?
- How could we prevent SLA violations and optimize edge resources utilization?

Caju: a content delivery system for edge networks [EUROPAR/BDMC'12]

- Hybrid architecture organized in storage domains
- Two classes of devices: coordinator and peer
- P2P communication, chunks, multisourcing ...

Caju: a content delivery system for edge networks [EUROPAR/BDMC'12]

 Customers are connected to the system through a peer, and assigned to a storage domain

 According to peers' requests (Create, Read, Delete), system performs Replication properly

• Service Level Agreements

AREN: Adaptive replication scheme for edge networks [ICPADS'12]

- The performance goals are twofold:
 - (1) prevent SLA violations
 - (2) reduce the usage of edge resources
- Combine bandwidth reservation and collaborative caching using thresholds

AREN: bandwidth reservation

- Max

Min

AREN: collaborative cache

AREN replication scheme

- AREN, a novel adaptive replication scheme for cloud storage in edge networks
 - Enforces strict SLA contracts efficiently
 - Improves resource allocation
- AREN tracks bandwidth reservation on edge nodes for operating collaborative caching mechanism

AREN replication scheme

- AREN, a novel adaptive replication scheme for cloud storage in edge networks
 - Enforces strict SLA contracts efficiently
 - Improves resource allocation
- AREN tracks bandwidth reservation on edge nodes for operating collaborative caching mechanism

Issues: AREN relies on bandwidth reservation and thresholds

AREN replication scheme

- AREN, a novel adaptive replication scheme for cloud storage in edge networks
 - Enforces strict SLA contracts efficiently
 - Improves resource allocation
- AREN tracks bandwidth reservation on edge nodes for operating collaborative caching mechanism

Issues: AREN relies on bandwidth reservation and thresholds

We cope with these issues by making predictions about Internet content demand for adapting replication accordingly

Hermes: predicting popularity and adapting replication [ICPADS'13]

- Hermes is an adaptive replication scheme based on accurate predictions about the popularity of Internet videos
- Two-step approach (for each view request):
 - (1) Popularity classifier for distinguishing between non-popular and popular contents
 - (2) Replication classifier for maintaining replication of popular content: *increasing, decreasing, and keeping*

Predicting Content Demand

Framework

Predicting Content Demand Measurements

- Predictions from 10 measurements of request arrival process:
 inter-arrival time
 - content size
 - network availability
 - network usage (load)
 - # of consumers
 - # of replicas

- inter-arrival time
 between requests (delta)
- aggregate number of downloads
- mean of time between requests (mtbr)
- life time
- average bandwidth

Evaluation Scenario

- PeerSim component: deadline-aware transport mechanism based on data flow [MOSPAS/HPCS'13]
 [PeerSim user code (http://peersim.sourceforge.net/#code)]
- Metrics: SLA violations, storage, and network usage
- Compare to: non-collaborative caching and AREN

Evaluation Scenario

Evaluation Scenario

Workload	
Requests per user	uniform
Experiment duration	4 hours
Mean requests per second	100
Requests fractions	5% of creations, 95% of views
Object size (follows Pareto)	shape=3, from 13MB to 1.6GB
Video popularity (Zipf-Mandelbrot)	shape=0.8, cutoff=# of videos
Videos' creation (Poisson)	λ =creations per second
Popularity growth from YouTube traces	21827 distinct patterns

- YouTube traces [Figueiredo et al., WSDM'11]
- SLA definitions for highly available contents
 - Customer-oriented bitrate metric (28MB/s)

Hermes: preventing SLA violations

Hermes: improving bitrate provision

Hermes: improving bitrate provision caching: 45Mbps

21

Hermes: reducing the number of replicas

Hermes: reducing the number of replicas

Hermes: saving storage

Hermes: saving storage

Final considerations

- Hermes, an adaptive replication for distributing videos in content delivery networks
 - Adapts content replication based on popularity predictions
 - Prevent SLA violations
 - Improves resource allocation
- Future work
 - Evaluate our scheme through a proof-ofconcept prototype

For further information: http://guthemberg.co.nr

Université Pierre et Marie Curie Laboratoire d'Informatique de Paris 6

Backup slides

18 December 2013

Hermes: predicting popularity and adapting replication

Tuning Hermes

Popularity Classifier

Replication Classifier

- Improve learning dataset (traces, logs, testbed measurements...)
- Improve Caju design (like a P2P system)
- Evaluate our schemes through a proof-ofconcept prototype
- Consider Hybrid/Mobile CDNs