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Abstract—Content availability has become increasingly

important for the Internet video delivery chain. To deliver

videos with an outstanding availability and meet the

increasing user expectations, content delivery networks

(CDNs) must enforce strict QoS metrics, like bitrate and

latency, through SLA contracts. Adaptive content repli-

cation has been seen as a promising way to achieve this

goal. However, it remains unclear how to avoid waste of

resources when strict SLA contracts must be enforced. In

this work, we introduce Hermes, an adaptive replication

scheme based on accurate predictions about the popularity

of Internet videos. Simulations using popularity growth

curves from YouTube traces suggest that our approach

meets user expectations efficiently. Compared to a non-

collaborative caching, Hermes reduces storage usage for

replication by two orders of magnitude, and under heavy

load conditions, it increases the average bitrate provision

by roughly 90%. Moreover, it prevents SLA violations

through an application-level deadline-aware mechanism.

Keywords—Video Quality, Popularity Growth, Peer-to-

Peer, Hybrid CDN, Replication, SLA, Prediction.

I. INTRODUCTION

Multimedia content distribution over the Internet has

increased dramatically in the recent years. A study pub-

lished by Cisco System, Inc [3] revealed that the global

Internet video traffic has surpassed peer-to-peer traffic

since 2010, becoming the largest type of Internet traffic.

Cisco also forecasts that video traffic will reach 86% of

the global consumer traffic by 2016, including TV, video-

on-demand (VoD), live streaming, and peer-to-peer (P2P)

file sharing.

In parallel, Internet access has become ubiquitous,

continuously faster, and cheaper. These advances have

contributed to increase the expectations of consumers on

Internet services. Today, content availability is critical,

particularly for streaming traffic, that includes VoD and

live streaming. On the one hand, for many workloads,

such as social network messaging or search engines,

QoS metrics can be defined in term of latency of short

transactions. On the other hand, streaming traffic is more

sensitive to buffering, where a stable and high bitrate

is essential. For example, Dobrain et al.[5] found that a

1% increase in buffering ratio can reduce the consumer’s

expected viewing time by more than three minutes. This

suggests that SLA contracts must include the bitrate as

a key QoS metric.

Yet current CDN architectures are not ready to fulfil

the requirements of the increasing demand for streaming

and meet consumers’ expectations. Through fine-grained

client-side measurements from over 200 million client

viewing sessions, Liu et al.[9] showed that 20% of these

sessions experience a re-buffering ratio of at least 10%,

14% of users have to wait more than 10 seconds for

video to start up, more than 28% of sessions have an

average bitrate less than 500Kbps, and 10% of users fail

to see any video at all.

To cope with these issues, CDN providers have started

to adopt for hybrid designs, that combine datacenters and

edge network resources [1]. The aim is to combine the

advantage of infrastructure-based and P2P systems. But,

the resource allocation on hybrid CDNs to meet user

expectations still imposes big challenges, particularly

if a minimal average bitrate has to be enforced. This

paper identifies adaptive content replication as one of

such challenges. Adaptive replication plays an important

role on the content availability. As the popularity of a

video increases, the number of replicas must be adapted

accordingly. Generally speaking, the faster and more

precise the replication scheme reacts to changes on

videos popularity, the better is the resource allocation

towards high content availability. However, to identify



popular videos precisely and to define the replication

degree properly are far from being trivial tasks.

In this work, we present Hermes, an adaptive replica-

tion scheme for offering highly available Internet videos

on hybrid CDNs. Hermes is based on predictions of

videos’ popularity. For that, we designed a learning

model using non-linear support vector machine (SVM)

methods. Inputs of our model come from lightweight

measurements of the request arrival process. Evaluations

with growth curves from YouTube traces show that our

predictions of popularity are accurate. That allows us to

prevent violations of strict SLAs by enforcing simple

replication policies. Our approach is flexible and can be

easily extended to different CDN scenarios.

This work makes two main contributions:

• We design and evaluate a predictor of Internet

video popularity with YouTube traces. Our pre-

dictor tracks the dynamics of popularity growth

curves accurately based on measurements of

request arrivals; thus, the prediction model is

flexible enough for being used in different de-

ployments.

• Based on our accurate predictions, we designed

and evaluated Hermes, an easy-to-deploy, adap-

tive replication scheme that provides highly

available Internet videos. Simulations on top of

PeerSim[10] show that Hermes outperforms a

non-collaborative caching by reducing storage

and network usage. Unlike most of the recent

deadline-aware approaches, Hermes does not re-

quire any modification of network stack to en-

force strict QoS metrics.

The rest of this work is organized as follows. Sec-

tion II presents our datasets, and measurements for

predictions. Section III describes the learning model. In

Section IV, we describe our evaluation scenario for edge

resources in a hybrid CDN, then we show the perfor-

mance analysis of our replication scheme. Section V

discusses related work, and Section VI concludes.

II. MOTIVATION AND MEASUREMENTS FOR

PREDICTIONS

In this section, we discuss the role of adaptive

replication schemes in content distribution. We present

our workload with popularity growth curves from real

YouTube traces, measurements, and datasets.

A. On the Track of YouTube Popularity Growth Curves

A fair reproduction of user interactions to Internet

videos is essential to evaluate an adaptive replication

scheme properly. Hence, we carefully set-up our work-

load to combine YouTube traces [6] to well-known

videos’ access patterns [14].

Figueiredo et al. [6] collected and characterized the

growth patterns of YouTube videos, whose datasets are

currently available online [16]. They analysed three types

of YouTube videos sets: videos that appear on YouTube

top list, videos that were banned from YouTube due

to copyrights violations, and videos that were randomly

selected through API calls. They crawled once a number

of videos’ daily features. For each video, there are up

to 100 daily measurements, or daily available samples,

per feature. In this work, we are mostly interested in

the measurements of view data feature, that depicts the

popularity growth curve of a video through a array of

cumulative number of daily views ranging from 0 to the

total number of views.

Before integrating to our workload, we first processed

the YouTube datasets to remove inconsistent measure-

ments, such as videos with no views. Basically, we

got rid of videos with small number of total views

(those smaller than the first quartile) and videos with

few daily measurements (those smaller than the third

quartile). That allows us to pick off 20% most represen-

tative YouTube growth patterns, accounting for 21827

distinct curves. Then, for a matter of simplicity, we

randomly selected, with a uniform distribution, curves

from this preprocessed data to be assigned to videos of

our workload. To summarize, Table I lists default values

for workload parameters. In our simulations, videos are

always divided in chunks of fixed size, 2MB. Assuming

that all consumers expect the same minimal QoS metric

for buffering their videos, we define a SLA contract

whose the minimal average bitrate is 14 chunks/s. We

consider that a SLA violation occurs whenever a viewer

does not observe her minimum average bitrate.

TABLE I. DEFAULT VALUES FOR WORKLOAD PARAMETERS

Workload

Requests per user uniform

Experiment duration 4 hours

Mean requests per second 100

Requests fractions 5% of creations, 95% of views

Object size (follows Pareto) shape=3, from 13MB to 1.6GB

Video popularity (Zipf-Mandelbrot) shape=0.8, cutoff=# of videos

Videos’ creation (Poisson) λ=creations per second

Popularity growth from YouTube traces 21827 distinct patterns



B. Adaptive Replication Schemes for Highly Available

Content

Replication schemes have become an important build-

ing block for Internet video providers to improve content

availability and meet consumers expectations. A good

popularity-aware replication scheme should offer content

replica maintenance to handle popularity growth prop-

erly.

Non-collaborative caching remains the simplest ap-

proach to provide popularity-aware replication of web

content [8]. They adapt the replication degree to the

content popularity using cache replacement policies, and

assuming fair-sharing as a key scheduling strategy. But,

Internet videos’ workloads on hybrid CDNs present new

challenges for non-collaborative caching, e.g. smaller and

highly heterogeneous storage for replicas, and a growing

need for high bitrate provision for meeting consumers’

expectations. Therefore, relying just on cache replace-

ment policies and fair-sharing scheduling can undermine

the performance of the whole system.

Our previous work, AREN [13], presents a novel

adaptive replication scheme which was designed with

these issues in mind. AREN relies on collaborative

caching and bandwidth reservation mechanism to adapt

the replication degree of contents and to enforce SLA

contracts for costumers. It applies a simple mechanism of

popularity classification and content replication based on

the current sum of bandwidth reservation and low/high

bandwidth thresholds. Simulations with synthetic work-

load demonstrated that this approach provides near-

optimal results, providing an outstanding content avail-

ability. It outperformed non-collaborative caching by pre-

venting almost 99.8% of SLA violations. By reducing the

total number of replicas, AREN reduces storage usage

for replication and increases the aggregate bandwidth.

Unlike non-collaborative caching, AREN reduces the

dependency on cache replacement policies by decreasing

consistently the number of replicas.

Although AREN’s results showed that it is highly effi-

cient in replicating Internet video workloads, its deploy-

ment raises considerable issues for Internet providers.

One of the main disadvantage of this approach, that

can make Internet providers reluctant to its use, is that

it requires changes of the functioning of the network

stack. Efficient bandwidth reservation for meeting dead-

lines, like D2TCP[15], requires major adjustments to the

transport network layer to provide end-to-end bandwidth

reservation properly.

To overcome this important issue, and encouraged

by findings with AREN’s threshold-based approach, we

introduce a flexible learning model for predicting popu-

larity and replication degree. It tracks popularity growth

of Internet videos based on lightweight measurements of

the request arrival process. The aim is to instrument a

collaborative caching, creating and deleting replicas, ac-

cording to video access patterns. We argue that, through

accurate predictions, we are able to react to popularity

growth changes promptly, and prevent SLA violations.

C. Measurements and Dataset for Predictions

One of our first efforts towards accurate predictions

was to gather as much information about users’ interac-

tions as possible in an easy manner. We run simulations

with the workload described in Subsection II-A for

collecting those measurements.

Our data comes from 10 lightweight measurements

of the request arrival process: video size, network avail-

ability, network usage (load), current number of viewers

and replicas, inter-arrival time between requests (delta),

aggregate number of views, mean of time between re-

quests (mtbr), life time, and average bitrate. We chose

this approach because it provides a simple procedure

to collect information of consumers’ interactions. In

hybrid CDNs, this data can be collected from logically

centralised coordinator servers that are already in charge

of accountability or admission control tasks. In addition,

we added labels to each line of our measurements.

Labels track the behaviour of AREN functioning, and

allow us to classify requests. For instance, labels permit

distinguishing popular from non-popular videos. We

described these labels as follows:

Non-popular videos: Videos with non-popular labels

are those whose access pattern of its request arrival

process has not trigged any increasing on the initial

replication degree. According to recent findings [14],

the popularity of Internet videos follows a Zipf-like

distribution, consequently most of them likely belong

with this group. In AREN, they do not require any extra

replica.

Popular videos: If during the simulations, a video has

its replication degree modified by AREN, we attribute

a popular label to it. In addition, we introduced fur-

ther information to this group in order to capture the

behaviour of the replication maintenance. Depending on

the decision taken by AREN, there will be three types,

or subclasses, of popular videos: increasing, keeping, or



decreasing. This allows us to interpret the measurement

as a trigger for changing the resource allocation of that

video, in our specific case, modifying the number of

replicas.

III. LEARNING MODEL

We describe our statistical learning model in this

section. First, we present a brief overview of statistical

learning modelling. Then, we explain the design of

our model, detailing our two-step approach. Finally, we

describe our implementation and framework for learning.

A. Statistical Learning Overview

Statistical learning is about learning from seen data

in order to predict unseen data with minimal error. Data

comprises measurements represented by a feature vector

x with a fixed number of dimensions p (x ∈ X ⊂ R
p)

from the input space X . Broadly speaking, there are two

ways of learning from data: supervised and unsupervised

learning.

In supervised learning, each measurement or input is

coupled with a y, a label, from the output space Y . To

learn, we have N pairs (x, y) drawn independent and

identically distributed (i.i.d.) from a fixed but unknown

join probability density Pr(X,Y ). This is true for both

training and testing datasets. For instance, we consider

the training dataset S = {xi, yi}
N
i=1 of N pairs (x, y).

From this dataset, the supervised learning algorithm

searches for a function f : X → R in a fixed function

class F . State-of-the-art algorithms, such as support

vector machines (SVM) [4] or Adaboost[7], aim to find

f⋆ in F with the lowest empirical risk defined as:

f⋆ ∈ argmin
f∈F

remp(f)

where remp(f) = 1
N

∑N
i=1 I{f(x) 6=yi} is computed over

the training set, and I{.} is the indicator function which

returns 1 if the predicate {.} is true and 0 otherwise.

In unsupervised learning, we have N samples

(x1, x2, . . . xN ) of a random p-vector X having prob-

ability density Pr(X). Unlike supervised learning, we do

not have outputs to learn. Instead, we are interested in

inferring the properties of the probability density Pr(X).

This allows us to have insights into how the data is

organized or clustered.

B. Learning Model for Internet Videos

In this work, data comes from users’ interactions

with Internet videos. We assume that there exists data

with near-optimal results from where we can learn. As

described in Section II, the data for learning comes

from simulations using AREN replication scheme. Each

dataset line contains 10 lightweight measurements of

request arrival process and a label, as described in Sub-

section II-C. We denote as inputs the measurements of

the request arrival process, and as outputs the popularity

labels.

In Subsection II-C, we present two classes of outputs:

non-popular and popular. Then, we describe that there are

three subclasses for popular videos. Therefore, we model

our problem in a two-step approach as follows:

Popularity classifier: This learner allows us to classify

videos into non-popular and popular. Since the popularity

of Internet videos follows a Zipf-like distribution, popu-

lar videos can be seen as rare events. Hence, we identify

popular videos as anomalies through an unsupervised

learning method with binary outputs.

Replication classifier: Here we consider popular videos

only. There are three subclasses of replication for popular

videos: increasing, keeping, and decreasing. In this case,

we use a multi-class supervised learning method.

C. Framework for Learning and Predicting, and Imple-

mentation

Our two-step classifier is based on support vector

machine (SVM) methods [4]. According to Friedman

et al., SVMs are a set of robust supervised learning

methods, that produce accurate, non-linear boundaries for

classifiers by constructing a linear boundary in a large,

transformed version of the input space. We implemented

our learning model as a module of Hermes using Scikit-

learn, a general-purpose machine learning library [11].

From Scikit-learn, we selected two main procedures:

sklearn.svm.OneClassSVM for popularity classi-

fier, and sklearn.svm.SVC for replication classifier.

We designed a simple framework to use our Hermes’s

learning module, depicted in Figure 1. Our framework

has two phases: (i) learning and (ii) predicting. Each

phase has its own YouTube-like workload. In the learning

phase, we first generate the training dataset with AREN.

Then we feed this training dataset to Hermes in order to

identify YouTube popularity patterns. Once the learning
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Fig. 1. Framework for learning and predicting Internet videos

popularity.

phase has been accomplished, Hermes can use its learn-

ing module in a predicting phase, as indicated in the the

left-hand side of Figure 1. In this phase, inputs comes

for measurements of the the request arrival process of

workload 2, that permit classifying requests to popular

videos and instrumenting replication accordingly.

IV. EVALUATION

Our utmost performance goal is to prevent all SLA vi-

olations. As detailed in Subsection II-A, a SLA violation

occurs whenever a viewer does not observe her minimum

average bitrate. We are also interested in reducing storage

and network usage as much as possible. We focus on

the storage usage for replication. In terms of network

usage, we are particularly interested in evaluating the

bitrate provision under heavy load. First we introduce

the scenario and the replication schemes evaluated in this

work. Then we present our most important results.

A. Evaluation Scenario and Replication Schemes

We evaluated this work with Caju, a tool which mod-

els a content distribution system for edge networks on top

of PeerSim. In Caju, the service provider infrastructure

is organized in federated storage domains, as depicted

in Figure 2. A storage domain is a logical entity that

aggregates a set of storage elements that are located close

to each order. There are two different classes of devices:

(i) operator-edge, furnished by storage operators, e.g.

small-sized datacenters, represented by big nodes up on

Figure 2, and (ii) consumer-edge, the small ones, whose

consumers are connected to, such as home gateways.

System interactions are straightforward. Users can

either share or view videos. For sharing, given a fixed

number of initial replicas n, it simulates the initial video

creation and a chain of object-replication of n − 1
stages. A view request is served by at most R nodes

with uniform load. Available sources come from r =

min(n,R). We set R to five for all experiments. A

detailed description of Caju is available in [13].
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Fig. 2. Evaluation scenario

Our evaluation scenario (Figure 2) includes 4002

nodes, arranged across two storage domains. There are

one operator-edge device and 2000 consumer-edge de-

vices per storage domain. Storage and network capaci-

ties differ according to the device class. Operator-edge

devices have 20TB of storage capacity and full-duplex

access link of 4Gbps. Consumer-edge devices contribute

200GB each, equipped with 100Mbps full-duplex links.

Note that the two operator-edge devices contribute with

a small fraction of aggregate edge resources, i.e. 5% of

the storage capacity and only 2% of the total network

capacity. This draws our attention to the performance

of replication schemes towards consumer-edge resource

usage. We assume that edge networks are connected to

the operator network that ensures inter-storage domain

connectivity. We assume only 1% consumer-edge de-

vices storage is available for caching additional replicas,

namely 2GB.

We evaluate three replication schemes.

Non-collaborative caching Adaptive replication

schemes based on non-collaborative caching, such as

those that uses Least Recent Used (LRU) algorithm,

are easy to implement and deploy. A new replica is

created whenever a user requests to view a video. LRU

replacement is enforced regarding the static percentage

of the local storage capacity for caching of 1%.

AREN That stands for Adaptive Replication for Edge

Networks. It relies on bandwidth reservation and collab-

orative caching to adapt the replication degree of popular

content. Considering a logically centralized coordinator,

AREN tracks the active aggregate bandwidth per content,

and decides if it is worth creating a new replica in

viewer side. The coordinator computes the utility of new

replicas based on thresholds. Replica utility measures



the benefit of creating replicas with regard to popularity

and current bandwidth consumption of a video. It also

checks if replicas are redundant and must be deleted.

For scheduling on edge networks, AREN enforces two

simple policies: divide-and-conquer and nearest source

selection. Further details about AREN are available in a

previous work [13].

Hermes This is our main contribution. It provides a

proper, adaptive replication scheme for Internet videos

that enforces strict SLA contracts through accurate pre-

dictions. More interestingly, it does not requires any

modification of the network stack, as most of deadline-

aware approaches do. Hermes implements our learning

model for Internet videos, described in Section III.

This module permits identifying popular Internet videos

based on lightweight measurements of request arrival

process. Since Hermes predicts accurately requests to

popular videos, we argue that enforces simple replication

policies is enough to prevent both violations and waste

of resources. To evaluate this idea, we define d as the

number of additional replicas to cope with the popularity

growths. Therefore, whenever a video is classified as

popular, new d-replicas are created. Similarly, Hermes

reduces replication degree according to the video pop-

ularity. Hermes enforces the same AREN’s policies for

requests scheduling on edge resources.

B. Predictions and Replication Performance

Hermes relies on predictions to identify popular

videos and enforce QoS metrics through replication.

Hermes’ performance depends mainly on (i) prediction

accuracy and (ii) the efficiency of the replication policy.

In Section III, we explain that our two-step classifier

relies on SVM methods. To measure the prediction

accuracy of each step, we vary the kernel, the main

SVM parameter. We consider four kernels: Radial Basis

Function (RBF), Linear, Polinomial (Poly), and Sigmoid.

For evaluating our classifier, we use the framework

described in Subsection III-C.

Popularity prediction accuracy: The first step of

our learning model predicts Internet videos popularity

through a binary classification. We used a dataset with

286823 samples of view requests, whose 1.31% of them

belong to popular videos. Figure 3 depicts the receiver

operating characteristic (ROC) curve. ROC curve is one

of the most common ways of evaluating the efficiency

of a binary classifier. This plot allows us to select the

best classifier by measuring the true positive rate versus

the false positive rate, and by computing the area under

the ROC curve (AUC), where the value 1 represents

the optimal classifier. Using RBF kernel, our classifier

reaches an AUC of 0.97, quite close to the optimal value.

Therefore, RBF kernel is the best choice for predicting

popularity.

Replication prediction accuracy: For the second step of

our learning model, the goal is to predict the replication

action for popular videos in three classes. The dataset

for this step contained 612754 view requests. Figures 4

shows total precision rates using different SVM kernels.

RBF outperforms the three other kernels with the highest

precision rate of 0.98, becoming our best choice. Unlike

popularity predictions results, Linear and Poly kernels

performed quite well, both scoring 0.97.
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Evaluating the replication policy: Whenever the learn-

ing module of Hermes predicts that a video needs more

replicas, we assume that d new replicas must be created

once for preventing violations. Figure 5 measures the

number of violations for different values of d, whose

values vary from one to 13. When d ranges from seven

to 10, there is no violations. This suggest that since

popularity predictions are accurate, a simple replication

policy should suffice. However, if d is bigger than 10,

replication adds enough load to cause violations. Hence,

we select d equal to seven as the most appropriate value

for preventing violations.

C. Resource Allocation Results and Analysis

We compare Hermes with a non-collaborative caching

and AREN, all described in Subsection IV-A. We evalu-

ate the network and storage usage, as well as the number

of violations.

We aim to adapt the number of replicas to the number

of views of a video, especially for the most popular
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ones. Figure 6 plots the maximum number of replicas

for the 1% most popular videos. Using caching, the

maximum number of replicas is high, raging from 817 to

1377. AREN permits decreasing significantly the lower

and upper limits, to 7 and 39. Hermes also reduces

the maximum replica range, which is from 9 to 58.

More interestingly, the shape of the replication curves of

Hermes and AREN are quite similar indeed. It confirms

that our predictions are accurate, and that a simple

replication policy works properly.

Reducing the number of replicas implies that the sys-

tems requires less storage for replication. Figure 7 shows

storage usage for replication by replication scheme. Al-

though Hermes utilizes more storage for replication than

AREN, its usage remains two orders of magnitude below

a non-collaborative caching. The maximum storage usage

for AREN, Hermes, and a non-collaborative caching

were 3, 49, and 7956 GB respectively. Hermes creates

more replicas than AREN because it does not rely on

bandwidth reservation to prevent violations. Despite that,

Hermes maintains replicas efficiently, keeping storage

usage very low, and making cache replacement policies

redundant.
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In terms of violations, Hermes performance is also

quite similar to AREN. Hermes prevents all violations.

Each point of the Figure 8 represents the number of

SLA violations for intervals of five minutes. Overall,

caching caused 1569 violations affecting almost one third

of all viewers, AREN had one violation, and Hermes

none. As AREN, Hermes prevents violations by (i)

creating new copies for popular videos only, and (ii)

adapting the number of replicas properly. Vertical lines

in Figure 8 represent the first access to the three popular

videos with the worst content provision through caching.

They account for 96.81% of all caching violations. The

appearance of these videos puts the system under heavy

load, which makes caching fails to prevent violations.

Figure 9 depicts the average bitrate for viewers of

the three videos with the worst content provision using

caching. When caching was under heavy load, half of

viewers experienced a very low bitrate, raging between

460Kbps and 4860Kbps. The mean bitrate with caching

was 45Mbps. On average, Hermes improved this bitrate

by roughly 90% under heavy load. AREN comes just

behind, improving bitrate provision by 87%. This find

suggests that Hermes largely outperforms caching, and

provides still better than AREN under heavy load con-

ditions.
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V. RELATED WORK

Our related work is two-fold: Internet videos and

adaptive replication schemes.

Internet videos: Recent studies [6], [14] have drawn

attention to reach a better understanding of Internet

videos properties, such as popularity growth. They point

out that well-known popularity characteristics are appli-

cable to multimedia content. For instance, Internet videos

popularity distribution follows power law, and popularity



bursts have a short duration and are quite likely to

happen just after the content publication. Dobrian et

al. [5] shed some light on the performance of Internet

videos provision on CDNs. They show that average

bitrate plays an important role in videos availability. Liu

et al. [9] make a case for a video control plane that

can use a global view of client and network conditions

to dynamically optimize the video delivery in order to

provide a high quality viewing experience despite an un-

reliable delivery infrastructure. However, the granularity

of their server selection mechanism is at a CDN, ignoring

edge network resources. Hermes addresses this issue by

adapting replication close to the viewers. Thus, Hermes

can be play a important role in collaborating with an

Internet control plane.

Adaptive replication schemes: Non-collaborative

caching remains the simplest approach to provide

popularity-aware replication of web content through

cache replacement policies[8]. However, we showed

when we adapt the number of replicas according to the

Internet video popularity properly, cache replacement

policy becomes redundant. EAD [12] and Skute [2]

adapt the number of replicas by using a cost-benefit

approach over decentralized and structured P2P systems.

EAD creates and deletes replicas throughout the

query path with regard to object hit rate using an

exponential moving average technique. Similarly,

Skute provides a replication management scheme

that evaluates replicas price and revenue across

different geographic locations. Despite presenting an

efficient framework for replication, they provide an

inaccurate bitrate provision, hence inappropriate for

high-quality video delivery. AREN [13] overcomes

these issues by combining bandwidth reservation and

collaborative caching successfully. Yet, its functioning

depends on modification of the network stack. Hermes

solves this issue through analysing the request arrival

process, performing accurate predictions of Internet

videos popularity, and maintaining replication degree

accordingly.

VI. CONCLUSIONS

In this work, we presented Hermes, an adaptive

replication scheme for offering highly available Inter-

net videos on hybrid CDNs. To adapt replication, we

proposed a learning model that tracks popularity growth

curves based on lightweight measurements of the request

arrival process. Simulations with YouTube traces showed

that our predictions are accurate. That allowed Hermes

to maintain the replication degree of Internet videos

properly. Our evaluation results highlight that Hermes

increases the average birate provision by roughly 90%,

contributing decisively to enhance viewing experience

of users. Our future work will mainly cover a proof-

of-concept prototype for evaluating Hermes using a real

testbed.
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