
HAL Id: hal-02145644
https://hal-enac.archives-ouvertes.fr/hal-02145644

Submitted on 3 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time-based Consensus
Hasan Heydari, Guthemberg Silvestre, Nicolas Larrieu, Alain Pirovano

To cite this version:
Hasan Heydari, Guthemberg Silvestre, Nicolas Larrieu, Alain Pirovano. Time-based Consensus. Euro-
Par 2019, European conference on parallel and distributed processing„ Aug 2019, Gottingen, Germany.
�hal-02145644�

https://hal-enac.archives-ouvertes.fr/hal-02145644
https://hal.archives-ouvertes.fr


Time-based Consensus

Hasan Heydari, Guthemberg Silvestre, Nicolas Larrieu, and Alain Pirovano

ENAC, Université de Toulouse, France
{heydari,silvestre,nicolas.larrieu,alain.pirovano}@enac.fr

Abstract. Reaching consensus is fundamental in distributed comput-
ing. For each execution of a consensus algorithm, there is no difference
between the proposed values by different nodes with respect to their
proposed times. By presenting a realistic application scenario related to
distributed asynchronous mobile robots in dynamic environments, we ar-
gue some safety-critical, real-time systems require reaching consensus on
the newest proposed values when the old proposed values may not be
valid anymore. Afterward, we formulate a new type of consensus prob-
lem called time-based consensus, which requires to take into account the
times of proposed values. Finally, to tackle such a consensus problem, we
determine an essential characteristic which should be considered.

Keywords: Consensus algorithm · Distributed mobile robot · Safety-
critical application · Real-time system · Dynamic environment.

1 Introduction

Reaching consensus is a primitive of distributed computing [3]. Consensus, in-
formally, refers to an agreement among a group of nodes in which each node
proposes a value, and the goal is to agree on exactly one value. There are several
reasons why, in distributed systems, consensus is required, like to agree on who
is the leader, to agree on who gets access to a shared resource, synchronizing
nodes’ clocks, to agree on an ordering of events/operations among nodes, or
achieving formation control [2].

There are different types of consensus problems. Each type is presented for
specific purposes and has its own characteristics but satisfying agreement and
termination properties is common among all the types. Based on validity prop-
erty, which means the decided value is one of the proposed values, the consensus
problems can be divided in two types. The first type satisfies validity property
which is the case in distributed data stores. For the other type of consensus prob-
lems, validity property is stated differently or not defined. For example, validity
property for average consensus [1] and max-min consensus [8], which are mostly
used in robotics, is not defined. In this paper, we focus on a subset of the first
type which is subject to FLP [4] (it is leader-based and should provide strong
consistency in addition to satisfying validity).

Formally, a consensus algorithm which is subject to FLP is correct when it
satisfies three properties– agreement, termination, and validity [3]. Also, it has



2 H. Heydari et al.

some characteristics– each node proposes exactly one value, all the proposed
values should be taken into account to reach consensus, there is no difference
between the proposed values with respect to their proposed times because the
system’s model is asynchronous and failures eventually occur, and if the nodes
want to propose other values, they have to execute the algorithm again. Paxos
[6] and Raft [7] are two well-known examples for such an algorithm.

For some safety-critical, real-time systems, the nodes have to consider the
times of proposed values and reach consensus on the newest proposed values.
Note that determining which proposed values are new is a challenging problem
in asynchronous distributed systems when occurring failures are possible. In
this paper, we formulate a new type of consensus problem called time-based
consensus, which requires to take into account the times of proposed values. The
structure of the paper is as follows. In Section 2, we argue that having such a
time-based consensus is crucial for some safety-critical, real-time systems, like
distributed asynchronous mobile robots in dynamic environments. We explain
the limitations of consensus algorithms that lead to not reaching consensus on
the newest proposed values in Section 3. Finally, (i) we formulate time-based
consensus problem and (ii) finish the paper by presenting ongoing works to
tackle such a problem.

2 Motivation

There are some safety-critical, real-time systems in which consensus is required,
and in the process of reaching consensus, it is important to consider the times
of proposed values. For an instance of such systems, suppose that there are n
mobile heterogeneous robots located in a burned building in which some persons
need help to rescue (Fig. 1(a)). The robots have two responsibilities– detecting
and counting the persons and rescue some of them by creating a formation. Since
the robots are mobile, and the environment is dynamic

(
which means if there

are nt detected persons at time t, it is possible that at time t′ (t′ > t), there are
nt′ (nt 6= nt′) detected ones due to finding new alive ones, dying some of them,
etc.

)
, the number of detected persons can be different for each robot and is not

constant during the rescue process (Fig. 1(b)). Control formation means that
some of the robots create a determined formation around the detected persons
(Fig. 1(c)). After creating a formation, they spread fire extinguishers to rescue
the persons.

To create a formation for rescuing p persons, np robots is required. Robots
for creating the formation need to reach consensus on the number of detected
persons. Its reason is two-fold. First, some of the robots do not know the correct
number of detected persons (Fig. 1(b)). Thus, when a robot detects a new person,
it needs to broadcast the number of persons. Second, if more than np robots are
allocated, it is not optimized. Note that the number of robots is limited, and
here, taking into account optimization is crucial because what robots are doing is
a critical task, and the remaining non-allocated robots can continue the rescue
process. Therefore, the robots need to know the exact number of persons to
decide how many of them have to participate in creating the formation.



Time-based Consensus 3

1,1

2,1 3,0

4,0

5,0

(a) The state of the system
at time t.

1,1

1,2

2,1 2,1 3,0

3,0 4,0

4,0
5,0

5,0

(b) The state of the sys-
tem at time t′. Robots
moved to new positions.

1,2

2,2

3,2

4,2

5,2

(c) The state of the system
at time t′′. Robots 1,2, and
5 create a formation.

Fig. 1. Circles and squares correspond to robots and persons respectively. The first
and second digits written in each circle are its unique identifier and detected persons
respectively. t < t′ < t′′.

3 Consensus Algorithms’ Limitations

Suppose that two nodes n1 and n2 execute a consensus algorithm (for the sake
of generality, suppose that the algorithm is Paxos) and are measuring/sensing
a critical data. In what follows, by presenting two scenarios, we show Paxos’
limitations that lead to not reaching consensus on the newest measured values.
Consider xi

1 and xj
2 (i, j ∈ N) are the measured values by n1 and n2 respectively.

n1 and n2 measure two values– x1
1 and x1

2. n1 by sending a prepare message to
n2 starts a consensus execution. In the first scenario, suppose that they reach
consensus on x1

1. Then, n1 measures a new value, x2
1 (x2

1 6= x1
2). It is clear that

if they execute the algorithm for another time, they can reach consensus on x1
2

while it is not correct (i.e, they have to reach consensus on x2
1 because it is the

newest measured value). This scenario is depicted in Fig. 2(a).
In another scenario which is depicted in Fig. 2(b), n1 measures a value like

x2
1 (x2

1 6= x1
2) in the time period t2 started after receiving some prepare message

of n2. They can reach consensus on x1
2 which is not correct. Indeed, what we

can do to distinguish the measured values with respect to their proposed times
is using the executions and phases of a consensus algorithm.

P
r
e
p
a
r
e

P
r
o
m

is
e

P
r
o
p
o
s
e A

c
c
e
p
t D

e
c
id

e

n1

n2

x1
1

x1
2

x2
1

t1 t2

(a) x2
1 and x1

2 are distinguishable with
respect to their proposed times but
Paxos does not consider it.

P
r
e
p
a
r
e P

re
pa

re

P
r
o
m

is
e

n1

n2

x1
1

x1
2

x2
1

t1 t2

(b) The measured values x1
1 and x1

2 are not
distinguishable with respect to their pro-
posed times for n1 but x2

1 and x1
2 are.

Fig. 2. Executing Paxos on two nodes.



4 H. Heydari et al.

4 Time-based Consensus and Ongoing Works

To tackle the problem explained in the previous sections, we model the system by
a dynamic asynchronous distributed system with n nodes, where each node is a
mobile robot. Each node has a sensor, which can be used to measure/sense some
critical data, and can send (receive) messages to (from) the other nodes located
in its communication range. Crash and link failures are possible. A correct node
and link is a non-failed one. Being dynamic, here, means the set of correct nodes
and links between a correct node and other correct nodes are not constant during
the rescue process. Here, we formulate time-based consensus. When an algorithm
satisfies three following properties, we say it can solve time-based consensus.

– Termination. Each node eventually should decide a value.
– Agreement. The decided values of all nodes should be the same. The de-

cided value is the last distinguishable proposed value (or among
the last distinguishable proposed values) before deciding a value.

– Validity. Each node can propose one or more than one values before
deciding a value by all nodes. The decided value should be proposed by
at least one node.

To tackle time-based consensus, we are using Paxos as a baseline because most
consensus algorithms which are subject to FLP are variants of Paxos [5]. By
changing some of its phases and adding an (some) additional phase(s) to it,
we want to present an algorithm for time-based consensus. One of the essential
characteristics of this algorithm is when a leader proposes a value measured at
pth phase of eth execution to some node, and the measured value of the node was
measured at p′th phase of e′th execution, the node cannot propose its measured
value where e′ < e or (e′ = e) ∧ (p′ < p).

References

1. Acciani, F., Frasca, P., Heijenk, G., Stoorvogel, A.A.: Achieving robust average
consensus over lossy wireless networks. IEEE Transactions on Control of Network
Systems 6, 127–137 (2019)

2. Alonso-Mora, J., Montijano, E., Nägeli, T., Hilliges, O., Schwager, M., Rus, D.:
Distributed multi-robot formation control in dynamic environments. Autonomous
Robots (2018)

3. Attiya, H., Welch, J., Zomaya, A.Y.: Distributed Computing. John Wiley & Sons
(2004)

4. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32, 374–382 (1985)

5. Hao, Z., Yi, S., Li, Q.: Edgecons: Achieving efficient consensus in edge computing
networks (2018)

6. Lamport, L.: Paxos made simple. ACM SIGACT News 32 (2001)
7. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm

(2014)
8. Shi, G., Xia, W., Johansson, K.H.: Convergence of max–min consensus algorithms.

Automatica 62, 11–17 (2015)


