
The Journal of Systems and Software 139 (2018) 84–106

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Anomaly detection and diagnosis for cloud services: Practical

experiments and lessons learned

Carla Sauvanaud

a , ∗, Mohamed Kaâniche

a , Karama Kanoun

a , Kahina Lazri b , Guthemberg Da

Silva Silvestre

c

a LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
b Orange Labs, 38 rue du General Leclerc, Issy-Les-Moulineaux, 92130, France
c ENAC, 7 avenue Edouard Belin, CS 54005, Toulouse Cedex 4, 31055, France

a r t i c l e i n f o

Article history:

Received 31 March 2017

Revised 15 December 2017

Accepted 31 January 2018

Available online 2 February 2018

Keywords:

Anomaly detection

System monitoring

Machine learning

Fault injection

SLA

Diagnosis

Virtualization

a b s t r a c t

The dependability of cloud computing services is a major concern of cloud providers. In particular,

anomaly detection techniques are crucial to detect anomalous service behaviors that may lead to the

violation of service level agreements (SLAs) drawn with users. This paper describes an anomaly detec-

tion system (ADS) designed to detect errors related to the erroneous behavior of the service, and SLA

violations in cloud services. One major objective is to help providers to diagnose the anomalous virtual

machines (VMs) on which a service is deployed as well as the type of error associated to the anomaly.

Our ADS includes a system monitoring entity that collects software counters characterizing the cloud

service, as well as a detection entity based on machine learning models. Additionally, a fault injection

entity is integrated into the ADS for the training the machine learning models. This entity is also used to

validate the ADS and to assess its anomaly detection and diagnosis performance. We validated our ADS

with two case studies deployments: a NoSQL database, and a virtual IP Multimedia Subsystem developed

implementing a virtual network function. Experimental results show that our ADS can achieve a high

detection and diagnosis performance.

© 2018 Elsevier Inc. All rights reserved.

t

r

n

c

m

d

f

fi

t

t

f

e

o
1. Introduction

The development of virtualization technologies has contributed

to the wide adoption of the cloud computing paradigm in various

application areas. Cloud computing enables the delivery of config-

urable computing resources with convenient, on-demand network

access to these resources. Three main categories of resources are

generally provided: infrastructures, development platforms, and

applications. The associated service types are respectively referred

to as Infrastructure as a Service (IaaS), Platform as a Service (PaaS),

and Software as a Service (SaaS).

To specify the expected quality of service requirements relevant

for a particular service, service level agreements (SLAs) are drawn

up between cloud providers and users. Such SLAs may encompass

various aspects such as performance requirements and dependabil-

ity properties. A violation of such SLAs may have severe conse-

quences on the users and lead to potential financial penalties.
∗ Corresponding author.

E-mail addresses: Carla.Sauvanaud@laas.fr , csauvana@laas.fr , carla.sauvanaud@

orange.com , carla.sauvanaud@enac.fr (C. Sauvanaud), Mohamed.Kaaniche@laas.fr

(M. Kaâniche), Karama.Kanoun@orange.com (K. Kanoun), Kahina.Lazri@orange.com

(K. Lazri), GuthembergDaSilva.Silvestre@enac.fr (G. Da Silva Silvestre).

a

t

l

t

c

https://doi.org/10.1016/j.jss.2018.01.039

0164-1212/© 2018 Elsevier Inc. All rights reserved.
Ensuring SLAs is a challenging task for cloud providers. Al-

hough they always seek to limit the risk of SLA violation occur-

ence by oversizing VM allocated resources, cloud providers can-

ot prevent anomalies caused by unintended events such as appli-

ation bugs, error propagation or flooding attacks. Since anomalies

ay be triggered by a large range of unexpected events, anomaly

etection and diagnosis is necessary to help providers to react be-

ore failures.

Also, recovery countermeasures enabling for instance the recon-

guration, restart, or migration of the services diagnosed to be po-

entially at the origin of a future SLA violation need to be planned

o mitigate the effects of the detected errors in order to avoid per-

ormance and dependability degradations impacting the end user

xperience.

In this paper, we are more particularly interested in the devel-

pment of an anomaly detection system (ADS) that can efficiently

ddress three main challenges faced by cloud providers.

First, cloud providers have to manage a large set of various

ypes of services that are usually run with different types of work-

oads and execution profiles. These services may face different

ypes of errors at runtime, and may be subject to several re-

onfigurations and dynamic workload changes during operations.

https://doi.org/10.1016/j.jss.2018.01.039
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.01.039&domain=pdf
mailto:Carla.Sauvanaud@laas.fr
mailto:csauvana@laas.fr
mailto:carla.sauvanaud@orange.com
mailto:carla.sauvanaud@orange.com
mailto:Mohamed.Kaaniche@laas.fr
mailto:Karama.Kanoun@orange.com
mailto:Kahina.Lazri@orange.com
mailto:GuthembergDaSilva.Silvestre@enac.fr
https://doi.org/10.1016/j.jss.2018.01.039

C. Sauvanaud et al. / The Journal of Systems and Software 139 (2018) 84–106 85

T

g

w

t

o

s

A

a

g

k

t

a

q

b

a

t

p

t

a

v

t

l

t

a

e

a

r

t

t

c

v

2

2

m

d

s

t

t

s

l

s

o

t

s

t

g

e

w

l

g

h

d

l

t

d

k

a

p

m

f

t

n

t

i

d

i

t

p

t

t

a

t

f

T

T

i

t

p

a

n

d

p

p

S

v

r

t

w

a

2

a

m

p

a

V

c

a

s

t

t

i

1 https://www.mongodb.org .
herefore, it would be time consuming for cloud providers to

ather detailed knowledge of each individual service to detect

hen the service exhibits an anomalous behavior. Consequently,

he anomaly detection and diagnosis mechanisms should be not

nly automated but also should not require too much effort to

etup and operate.

The second challenge is related to the need to ensure that the

DS could be easily applicable to various types of services without

rduous configurations. Accordingly, it should be designed to be

eneric and service-agnostic and should not depend on any prior

nowledge of the service specification or on the types of anomalies

hat might affect the service.

Finally, the ADS needs to be run online in order to dynamically

dapt to environmental and workload changes and also to enable

uick decision making to identify appropriate countermeasures to

e taken as soon as an anomaly is detected.

Our goal is to design and implement an ADS satisfying the

forementioned major criteria and associated challenges. Indeed,

wo detection objectives are targeted: i) detection of errors and

reliminary symptoms that might potentially lead to SLA viola-

ions, and ii) detection of SLA violations. The detection of errors

nd preliminary symptoms provides early alarms of a future SLA

iolation. In the case that such errors are not detected, the detec-

ion of SLA violations is still relevant in order to trigger appropriate

ast-minute countermeasures. Besides the detection of anomalies,

he goal of the proposed ADS is also to provide a high-level di-

gnosis of the origin of the detected anomalies (in particular, the

rror type and the virtual machine at the origin of the anomaly).

Different types of data can be used as inputs to perform

nomaly detection and diagnosis. The ADS proposed in this paper

elies on system monitoring data corresponding to software coun-

ers (such as CPU consumption, free memory...), collected through

he hypervisors or the operating systems hosting the virtual ma-

hines on which the cloud services are deployed. As shown in pre-

ious works (Nguyen et al., 2013; Gong et al., 2010a; Dean et al.,

012; Guan and Fu, 2013; Silvestre et al., 2014; Sauvanaud et al.,

015a), such data are well suited to reflect the behavior of the

onitored target system at runtime. In our context, relying on such

ata is also motivated by the requirement to develop generic and

ervice-agnostic detection mechanisms that can be easily applied

o different types of services. A significant result of this paper is

hat we analyze in different scenarios the detection and diagno-

is performance when applied on data collected at the hypervisor

evel. We demonstrate that for some anomalies analyzing hypervi-

or data only, allows the detection with high accuracy. This result

ffers the opportunity to cloud providers to perform anomaly de-

ection and diagnosis for the running VMs while being non intru-

ive with respect the users (no monitoring agents are run within

he VMs).

Anomaly detection is often based on machine learning (ML) al-

orithms (Denning, 1987; Lee et al., 1999; Heberlein, 1995; Zhang

t al., 2008; Aleskerov et al., 1997; Lee and Xiang, 2001) that are

ell suited to fulfill the requirement to perform detection on-

ine and automatically. Both supervised and unsupervised ML al-

orithms can be used. With supervised learning, anomalous be-

aviors of the service are classified based on prior knowledge of

ata corresponding to normal behavior of a service and anoma-

ies. This knowledge is acquired during an experimental execu-

ion of the service called training phase . Unsupervised learning

oes not require such knowledge and enables the detection of un-

nown anomalies. While our ADS can work with both algorithms,

s shown in our previous work (Sauvanaud et al., 2015b), in this

aper we focus on supervised algorithms. Since a cloud service is

ostly exhibiting a normal behavior during runtime, we developed

ault injection tools for two goals: i) to inject anomalies during the

raining phase of machine learning models and collect data of both
ormal behaviors and anomalies, ii) to assess the anomaly detec-

ion and diagnosis efficiency of our ADS during a validation phase

n presence of anomalies.

The key contributions of this paper include the following:

• Definition of a new ADS for cloud services enabling the de-

tection of two types of anomalies (errors and SLA violations

(SLAV)) while providing two diagnosis levels to the cloud

provider (i.e., identifying the anomalous VM and the type of er-

ror causing the anomaly):
• Deployment and validation of our ADS on a VMware based

cloud computing platform, with detailed sensitivity analyses il-

lustrating its detection performance using supervised machine

learning algorithms. The validation is based on two case stud-

ies coming from different industrial domains: the MongoDB

database 1 and the IP multimedia subsystem (IMS) developed as

a virtual network function (VNF). The experimental results in-

clude a comparative analysis of the detection performance ob-

tained with OS related monitoring data and hypervisor moni-

toring data.

As discussed in the related work section of this paper, anomaly

etection has been the subject of an active research effort in var-

ous application domains, including in cloud services and infras-

ructures. One major focus of the work presented in this paper is to

rovide detailed insights about the implementation and the prac-

ical performance of the proposed ADS through its application to

wo different case studies and the execution of several sensitivity

nalyses. The results show a high performance of our ADS for de-

ecting errors and SLA violations affecting cloud services, and also

or diagnosing the anomalous VMs and associated types of errors.

he best detection is obtained with OS related monitoring data.

o the best of our knowledge, published work have a more lim-

ted scope regarding the anomaly detection and diagnosis objec-

ives and the results presented. The specific properties of the pro-

osed ADS make it generic and suitable to cloud infrastructures

s it does not require specific knowledge of running applications

either of the functional dependencies among VM components to

etect and diagnose errors.

In the following, we first present our ADS in Section 2 . A

rototype describing an implementation of the proposed ADS is

resented in Section 3 . Then we describe our case studies in

ection 4 as well as the experimentations run in order to collect

alidation-purposed datasets. Sections 5 and 6 provide validation

esults of our ADS respectively on the MongoDB and the Clearwa-

er case studies. Sections 7 and 8 respectively discuss the related

ork and some limitations of our ADS. Finally, Section 9 concludes

nd provides some directions for future work.

. Anomaly detection system

Our ADS is associated with a target system running a service

nd serving users requests. It collects monitoring data from the

onitored target system and processes this information to detect

ossible anomalies.

A cloud service is deployed on one or several VMs hosted on

 virtualized infrastructure composed of several hypervisors. Each

M runs a specific application that is essential to the service exe-

ution.

In the experimental environment we use for our ADS validation,

 workload generator emulates actual users requests to solicit the

ervice. This workload generator can be used to compute and log

he number of failed requests. This information is used to evaluate

he service level and to train our machine learning algorithms to

nfer the SLAV from monitoring data.

https://www.mongodb.org

86 C. Sauvanaud et al. / The Journal of Systems and Software 139 (2018) 84–106

Fig. 1. Target system and ADS entities.

Fig. 2. Sources for the collection of monitoring data from VMs hosting a cloud ser-

vice. The monitoring data are presented in orange.

Fig. 3. Processing of VM metrics.

m

F

s

d

a

d

V

m
Usually, a cloud provider does not have access to the specifi-

cation of the service deployed on the infrastructure. Consequently,

our ADS is not configured to have any a priori knowledge about

relevant features that constitute an anomalous behavior of the tar-

get system. It actually needs to learn from system monitoring data

what represents an anomalous behavior.

Our ADS is organized in three entities shown in Fig. 1 : the

monitoring entity, the data processing entity, and the fault injec-

tion entity. We first present the three entities before presenting in

Section 2.4 the performance measures evaluated for our ADS vali-

dation. Specifically, Section 2.1 describes the monitoring entity that

collects the monitoring data to be analyzed by the data process-

ing entity. The latter is described in Section 2.2 . Section 2.3 de-

scribes the fault injection entity that aims at emulating errors into

a service to observe the service under normal and abnormal condi-

tions, and to gather datasets of monitoring data representing them.

The datasets are used for two complementary purposes: i) to train

anomaly detection and diagnosis models, and ii) to validate the de-

tection performance of our ADS.

2.1. Monitoring

As for any computing system, the performance of a cloud ser-

vice can be observed and analyzed based on several means such as

system or application logs, system monitoring data, or audit trails

as shown in Simache et al. (2002) , Simache and Kaâniche (2001) ,

Tan et al. (2012) and Dean et al. (2012) .

System monitoring data are numerical data that have the ad-

vantage not to need extra processing like pattern matching in the

case of text data, in order to be handled by detection algorithms.

The gathering of such data has the advantage not to depend on the

implementation of the service, therefore we use monitoring data in

our ADS.

In more details, system monitoring provides units of informa-

tion about a system that are called counters . The actual counter

values are called metrics . A vector of metrics collected at a given

timestamp corresponds to an observation (also referred to as mon-

itoring data).

An observation collected on the monitored system in the pres-

ence of anomaly is referred to as an anomalous observation , other-

wise it is a normal observation .

We assume that anomalies result in changes in a service behav-

ior, and these changes lead to significant variations of some system

monitoring metrics, allowing their detection.

In our ADS, observations are collected periodically by means

of two possible monitoring sources : either from the hypervisor, or

from the OS of each of the VMs providing the service.

In practice, in a real deployment, only one source is to be used.

Indeed, one of our objectives is to compare the detection perfor-
ance of our ADS, using these two sources of data illustrated in

ig. 2 and described below.

• Hypervisor monitoring . The hypervisors hosting a service VMs

can provide monitoring data related to each VM such as its

memory consumption, its CPU usage or its network bandwidth.

Indeed, the hypervisors grant these resources to the VMs and

usually propose an application programming interface (API) to

fetch such data. Therefore, the hypervisor monitoring source does

not need any tool to be installed in the VMs to collect data.
• OS monitoring . The OS of a service VM can also provide mon-

itoring data if additional monitoring agents are installed in the

VM. The number of available counters from the OS is more im-

portant than in the case of the hypervisor monitoring source.

Indeed, the counters collected by the agents are related to dif-

ferent aspects of OS performance such as system buffers size

and use, and in terms of memory pages state for instance.

These low level VMs counters are not known by the underly-

ing hypervisor.

VM observations are analyzed by the data processing entity

eparately for each VM (using either OS or hypervisor monitoring

ata). Fig. 3 illustrates this separate processing. In the figure, data

re transmitted directly for data processing, and are stored in a

atabase when needed (see Section 2.2).

When an analysis is performed based on data related to a given

M, say VM A , VM A is referred to as the observed VM .

Since the VMs on which a service is deployed may imple-

ent different applications with different behaviors, processing the

C. Sauvanaud et al. / The Journal of Systems and Software 139 (2018) 84–106 87

Fig. 4. Typical evolution of the PUR.

c

V

i

y

g

e

s

t

l

c

2

r

p

s

d

2

o

i

l

i

a

S

m

s

k

s

s

p

u

i

l

A

P

u

t

s

b

r

p

t

s

g

i

p

i

t

e

a

a

s

2

i

a

o

u

t

a

t

t

u

q

V

V

g

2

a

w

t

(

s

a

c

l

A

d

d

b

r

c

t

w

d

F

s
ollected metrics per-VM enables us to individually analyze each

M without generalizing their behaviors. Also, it provides valuable

nformation for the analysis of anomaly propagation and the anal-

sis of the root cause of an anomaly. Anomalies may indeed propa-

ate into several VMs interconnected through a network or close to

ach other in a datacenter. The propagation may be caused for in-

tance by the reception of anomalous packets by several VMs from

he same anomalous router, or by a high temperature in a particu-

ar area of a datacenter. For instance, the root cause of an anomaly

ould be the VM that first exhibited an anomalous behavior.

.2. Data processing per VM

This entity performs two parallel processing tasks in order to

espectively detect the two types of anomalies considered in this

aper: errors, and SLAVs. We first define the error and SLAV mea-

ure, before presenting the data processing tasks, followed by the

etection and diagnosis models handled by each of these tasks.

.2.1. Definition of measures

As per the definition stated in Avizienis et al. (2004) , an error

ccurs when the system deviates from the correct service state. It

s regarded in this work as the part of the system state that may

ead to an SLAV. The cause of an error is a fault .

SLAs generally define agreements between one provider and

ts clients that express high level requirements related to service

vailability or performances (ETSI, 2012). Cloud SLAs overlap with

LAs of a wide range of other usage-based markets (e.g. Telecom-

unications) that were used for a long time beforehand. As a re-

ult, the requirements can be expressed in terms of commonly

nown low level metrics such as the service response time or the

ervice throughput, or by global metrics such as the percentage of

uccessful completion of submitted requests, in other terms, the

ercentage of successful requests (PSR).

In this work, we evaluate more particularly the percentage of

nsuccessful requests (P UR = 1 − P SR) as a measure of unavailabil-

ty. Thus, we consider that the SLA of a service is satisfied as

ong as the PUR does not overpass a maximal threshold PUR_max .

n SLA violation (SLAV) occurs when PUR_max is overpassed (i.e.,

 UR > P UR max). The PUR can be computed for a single user (i.e.,

ser PUR) or for the set of users of a service (i.e., service PUR). In

his paper, we evaluate the service PUR.

For the sake of clarity, we also hereby define a preliminary

ymptom of an SLAV (SLAV_PS) as the state describing the system

ehavior during a period [t − δt , t] where t is the time of occur-

ence of the SLAV. δt should be set according to one’s detection

urposes and to the nature of the SLAV (maybe the SLAV is one

hat can be predicted a long time ahead, in that case, δt should be

et to 20 min for instance).

A typical evolution of the PUR before an SLAV occurrence is

iven in Fig. 4 , illustrating a system experiencing a normal behav-

or, preliminary symptoms of SLAV (i.e., SLAV_PS) and SLAV. In this
aper, we evaluate the service PUR. SLAV_PS has been investigated

n our previous work (Sauvanaud et al., 2016).

It can be noticed that the PUR threshold overpassing can be ei-

her caused by an anomalous network driver for instance or an

normous growth of user requests. Both cases are considered as

nomalies ; in the last case scenario, the system should have been

ble to scale by means of load prediction systems and automatic

ystem scaling.

.2.2. Data processing tasks

Each parallel task classifies whether the system is experienc-

ng a normal behavior or respectively one of the two types of

nomalies (a task classifies between normal behavior and error, the

ther one classifies between normal behavior and SLAV). There-

pon, each task has to perform a binary classification .

Anomaly diagnosis requires Multiclass classification . in this con-

ext, a task performs detection while identifying several classes of

nomaly like “anomaly in VM x CPU” or “anomaly in VM x memory”.

Two levels of diagnosis are thus possible in our ADS allowing

o either diagnose the anomalous VM, or the type of error within

he observed VM.

It is worth to mention that, in our approach, for each VM, we

se only data collected from this VM to characterize its behavior. A

uestion could be raised about whether data collected from a given

M can also allow to diagnose an anomaly occurring in another

M contributing to the same service. This question will be investi-

ated during the experimental validation of the ADS in Section 6 .

.2.3. Data processing models

Machine learning is a popular field of computer science aimed

t implementing automatic computing procedures to learn a task

ithout being explicitly programmed. It turned out to be ex-

remely relevant for classification problems on numerical data

 Michie et al., 1994). Machine learning can be applied so as to clas-

ify behaviors corresponding to the two types of anomalies by cre-

ting classification models operating on system monitoring data.

There is a large number of machine learning algorithms. The

lassifiers can be divided into three types depending on their

earning approach: supervised, unsupervised, or semi-supervised.

 supervised learning requires the provision of samples of labeled

ata to build classification models. Unsupervised learning relies on

ensity or distance thresholds for instance, to create groups of data

ut they do not rely on labeled data. A semi-supervised learning

elies on both labeled and unlabeled data samples to build classifi-

ation models that still can be updated with labeled samples after

heir training phase.

In this paper, we concentrate on supervised learning algorithms

hich are widely used classifiers, also known to provide good

etection performance in previous work (Van Hulse et al., 2007;

arshchi et al., 2015).

Supervised learning algorithms consist of two phases, pre-

ented in Fig. 5 (a) and (b). The first phase is the training phase ,

88 C. Sauvanaud et al. / The Journal of Systems and Software 139 (2018) 84–106

Fig. 5. Real deployment phases of supervised anomaly detection.

n

t

fi

c

f

S

o

i

n

t

y

fi

b

a

p

2

t

n

i

d

t

p

i

e

t

f

t

t

i

t

s

2

w

m

o

during which classification models are created offline . The cre-

ation of models requires samples of labeled monitoring data in-

dicating whether or not there was an anomaly during the collec-

tion of the sample. Samples are called training data . They are col-

lected by the monitoring entity and stored in a DataBase (DB in

Fig. 5 (a)). One can note that by using labeling, data are not ana-

lyzed as time series and labeled data can be considered individ-

ually without time ordering. The more samples are provided dur-

ing this phase, the more accurate is the model. One should make

a sensitivity analysis to identify the minimal size of the training

dataset that still allows a good detection performance. Such sam-

ples are obtained from a training-purposed offline execution of a tar-

get system. During such an execution, the target system is moni-

tored while experiencing normal behaviors as well as anomalies

obtained through fault injection campaigns (they are described in

Section 2.3).

Once a model is trained, it is used during the second phase re-

ferred to as the detection phase .

For a real deployment, the second phase corresponds to the

operational phase of the system. Following offline model train-

ing phase, the model is used to detect anomalies occurring in the

system itself. Observations of each VM are directly routed by the

monitoring entity to the data processing corresponding to the VM

and processed online.

In an experimental environment, the trained model is used to

detect anomalies resulting from faults injected to validate the de-

tection performance of the ADS (validation-purposed execution).

The observations gathered during such executions are called vali-

dation data .

In both cases, the ADS performs predictions of whether a new

monitoring observation belongs to a particular class of behaviors

that it learned to classify. Models can be configured to predict the

probabilities of class membership of an observation. We call them

prediction probabilities . The output of a model is therefore one or

several probabilities, depending on whether it performs a binary or

multiclass classification. For instance, a model output for an obser-

vation can be a probability of 0.2 for it to be in the class labeled 1

and corresponding to the detection of an error. Given the resulting

probabilities, it is then easy to set a detection threshold defining the

limit above which an observation corresponds to a particular class.

A prediction is accurate when a model predicts that an observa-

tion corresponds to an anomaly (resp. normal behavior) and some

postponed analysis confirms that is was indeed an anomaly (resp.
ormal behavior). Such an analysis corresponds to the validation of

he detection. It notably can be performed by means of i) the con-

guration of a workload generator and ii) the injection campaign

onfiguration.

One can note that an offline execution can be used both

or training and validation purposes. Also, we recall from

ection 2.2.2 that the diagnosis of an anomaly is handled by means

f multiclass detection models. Thus, the diagnosis of an anomaly

s also performed during the detection phase.

Finally, the current implementation of our ADS focuses on the

otion of detection threshold to validate the predictions of detec-

ion models. In the end, this leads to consider binary predictions:

es or no to the detection of one type of anomaly. However, a con-

dence level like the one presented in Carrozza et al. (2008) could

e computed from algorithms detection probabilities. This would

ctually be necessary to validate the location of an anomaly

ointed by several VMs of a large scale system.

.3. Fault injection

Fault injection is used in our study for two goals: i) the collec-

ion of service monitoring data representing both anomalies and

ormal behaviors in order to train detection models, ii) the val-

dation of our ADS in the presence of anomalies. As the current

efinition of our ADS is based on supervised learning algorithms,

he fault injection entity especially needs to cover a wide range of

otential anomalies. We hereby do not propose a fault model but

nstead, we use software implemented fault injection technique to

mulate errors. By this means, faults are characterized according to

heir impact on the service resources. As one error can originate

rom several classes of faults, error emulation enables to enlarge

he spectrum of fault coverage of our ADS.

The error emulations (sometimes also referred to as fault injec-

ions in the literature) are carried out by means of injection tools

n the target service VMs. In the following we present the errors

hat our injection tools emulate and describe the orchestration of

everal injections into injection campaigns .

.3.1. Error emulation

Software implemented fault injection tools are used to inject

idespread abrupt anomalous behaviors that are recorded in com-

on computing systems. Such behaviors arise when several classes

f software or hardware faults are activated.

C. Sauvanaud et al. / The Journal of Systems and Software 139 (2018) 84–106 89

p

t

s

t

u

m

s

i

n

b

g

i

a

h

u

a

d

c

m

w

f

t

W

m

fi

q

v

b

t

c

e

w

(

m

i

w

p

a

i

s

t

V

i

o

t

c

c

r

a

o

t

o

C

v

o

r

b

t

a

2

t

g

i

c

r

c

e

g

l

s

fi

p

A

I

p

{

c

j

a

e

o

n

a

n

t

d

t

T

h

a

m

2

t

s

s

t

c
Local emulation of errors is carried out through the injections

erformed in services VMs. Such injections are characterized by

wo parameters: the type of error they emulate and their inten-

ity level.

Five error types are emulated and distinguished according to

he service resource they impact: i) high CPU consumption, ii) mis-

se of memory (i.e., increase of memory consumption), iii) abnor-

al number of disk accesses (i.e., increase of disk I/O access and

ynchronizations), iv) network packet loss, and v) network latency

ncrease. They are respectively referred to as CPU, memory, disk,

etwork packet loss, and network latency errors, and are described

elow.

CPU errors. Abnormal CPU consumptions may arise from pro-

rams encountering impossible termination conditions leading to

nfinite loops, busy waits or deadlocks of competing actions, which

re common issues in multiprocessing and distributed systems.

Memory errors. Abnormal memory usages are common and

appen when allocated chunks of memory are not freed after their

se. Accumulations of unfreed memory may lead to memory short-

ge and system failures.

Disk errors. A high number of disk accesses, or an increase of

isk accesses over a short period of time, emulate disks whose ac-

esses often fail and lead to an increase in disk access retries. It

ay also result from a program stuck in an infinite loop of data

riting.

Network packet loss and latency errors. Such errors may arise

rom network interfaces of the service or from the network in-

erconnection of the virtualized infrastructure hosting the service.

e emulate packet losses and latency increases. Packet losses

ay arise from undersized buffers, wrong routing policies or even

rewall misconfigurations. Latency anomalies may originate from

ueuing or processing delays of packets on gateways or at the ser-

ice level.

These four types represent all four resource domains exploited

y computing systems in general and our two case studies in par-

icular (databases and network function virtualization, or NFV, ar-

hitectures). They are also commonly referenced in the general lit-

rature about fault injection (Kanoun and Spainhower, 2008) as

ell as in more recent work on NFV architecture for instance

 Cotroneo et al., 2017).

Injection intensities correspond to a gradation of the impact

agnitude of an injection in a service. Such notion is tackled

n this work because preliminary experimentations showed that

hen not enough examples of varying amount of resource occu-

ation were included in the training dataset, the machine learning

lgorithms were not efficient always at detecting and locating the

njections being performed.

The calibration of injection intensities depends on the target

ystem. Indeed, even if the VMs of a service are configured with

he same VM resource template, the applications installed in each

M do not use resources in a similar way. For example, a memory

njection can have a large impact on the behavior of a memory-

riented application but no impact on the behavior of a different

ype of application, or the same application but with a different

onfiguration. As a consequence, high intensity injections in a VM

ould lead to a high value of the PUR (percentage of undelivered

equests) whereas the same injection in another VM could lead to

 low PUR. It is therefore important to calibrate intensity levels in

rder for the injections to be intensive enough for the ADS to de-

ect them, while not being too intensive for the VMs not to freeze

r reboot.

Table 1 presents the intensity levels that we calibrated for our

learwater case study presented in Section 4.2 .

Regarding the memory, disk and CPU injections, the intensity

alues of errors are constrained by the capacity of the VMs OSs. In

ther words, level 10 of injection (resp. level 5) is the maximum
esource consumption (resp. 50% of resource) allowed by the OS

efore killing the execution of the injection agent.

Considering the remaining types of injections, level 10 of injec-

ion (resp. level 5) value is set so as to lead to around 99% (resp.

round 50%) of PUR when applied in at least one VM.

.3.2. Injection campaign

An injection campaign corresponds to the execution of a cus-

omizable main script that periodically performs injections in tar-

et service VMs.

An injection is defined by i) the targeted VM, ii) its error type,

ii) its intensity level and iv) its duration. During a campaign, two

onsecutive injections are separated by a stabilization time. With

egard to these parameters, a campaign consists of injecting all

ombinations of injections (i.e., the injection of each error type of

ach intensity level, in each VM).

The parameters of an injection campaign are as follows: tar-

et VMs listed in l_vm , error types listed in l_type , intensity levels,

isted in l_intensity , an injection duration set in inject_duration , a

tabilization time set in pause .

In more details, each error type of each intensity level is

rst injected in a first VM, then in a second VM, etc. Our cam-

aigns execution is explained in Algorithm 1 . Also, Fig. 6 de-

lgorithm 1 Injection campaign.

nput: l _ v m , l _ type , l _ intensit y , in ject _ durat ion , pause

for vm in l_vm do

for err in l_type do

for intens in l_intensity do

in jection = In jection (err, intens, in ject _ duration)

in j ect _ in _ v m (v m, in j ection)

sleep(pause)

end for

end for

end for

icts an injection campaign with the following parameters: l _ v m =
 V M 1 , V M 2 } , l _ type = { C P U} , and l _ int ensity = { 4 , 7 } . An injection

ampaign ends when all error types of all intensity levels were in-

ected in each VM.

The injection duration should be long enough in order to collect

 sufficient number of anomalous observations, while being short

nough in order for the injection duration to be realistic. More-

ver, injection campaigns with very short injection durations do

ot necessarily lead to SLAVs. As a consequence, while monitoring

 service and running such campaigns, it is not possible to collect

umerous observations of SLAV, that are however needed for the

raining phase of supervised algorithms. Therefore, the injection

urations must be carefully calibrated so as to be long enough.

Regarding stabilization times between injections, they enable

he VMs to reach a stable normal behavior after each injection.

his time should be calibrated with regard to the case study be-

aviors. A short stabilization time could lead to an overlap of

nomalous behaviors related to consecutive injected errors; which

akes it difficult to diagnosis the anomalies.

.4. Validation of the ADS detection performance

Since classification models and ADS are never perfect, we need

o validate our ADS by deploying its entities as well as a target

ystem comprising a workload generator. The ADS monitors the

ervice, injects errors, and stores normal and anomalous observa-

ions describing the service in database for further analysis. We

all experimentation the validation-purposed execution of our ADS

90 C. Sauvanaud et al. / The Journal of Systems and Software 139 (2018) 84–106

Table 1

Injection intensity levels.

Error type Unit Intensity level

1 2 3 4 5 6 7 8 9 10

CPU % 10 20 30 40 50 60 70 80 90 100

Memory % 70 73 76 79 82 85 88 91 94 97

Disk #process 5 10 15 20 25 30 35 40 45 50

Network packet loss % 0.004 0.008 0.012 0.016 0.02 0.024 0.028 0.032 0.036 0.04

Network latency ms. 2 8 14 20 26 32 38 44 50 56

Fig. 6. Injection campaign example.

3

i

d

p

t

C

d

T

c

r

l

T

l

p

o

2

E

G

n

i

3

t
during a fault injection campaign on the target system. The result-

ing datasets are then available for validation analyses .

The analysis results (i.e., the ADS detection performance) are

given in terms of the classical ROC (Receiver Operating Charac-

teristic) and PR (Precision-Recall) curves. ROC and PR are widely

used in anomaly detection analyses but usually separately like in

Dean et al. (2012) , Guan et al. (2012b) and Miyazawa et al. (2015) .

In this work, we use both ROC and PR curves because they provide,

by definition, complementary overviews.

The ROC curves present the true positive rate (T P R =

T P
T P+ F N

2)

and the false positive rate (F P R =

F P
F P+ T N) for different detection

thresholds. Both rates are independent from the proportion of

anomalies in the dataset being studied compared to the proportion

of normal behaviors, i.e., they are independent from the dataset

labels distribution . The results obtained by the analysis of such

curves can therefore potentially be generalized to datasets with

different distributions (Davis and Goadrich, 2006). A perfect clas-

sifier always has a T P R = 1 , and F P R = 0 .

The PR curves present the precision (precision =

T P
T P+ F P) and the

recall (or TPR) for different detection thresholds. By definition of

the precision, the PR curves depend on the dataset distribution. A

perfect classifier always has a precision and a recall of 1.

The area under the ROC (resp. PR) curve well summa-

rizes the ROC (resp. PR) values for all the detection thresholds

(Bradley, 1997). A perfect classifier would have an area under the

curve (AUC) of 1.

While computing the AUC obtained for an analysis (it corre-

sponds to the run of 100 tests), we consider that the results, and

thus the detection performance is: excellent when both the PR and

ROC AUCs are above 0.90, acceptable when both the PR and ROC

AUCs are above 0.70, and not acceptable when at least the PR or

ROC AUCs is below 0.70.
2 TP: True positive, FP: False positive, TN: True negative, FN: False negative.

s

e

t
. Implementation

We deployed on a virtualized platform a prototype implement-

ng the three entities of our ADS in three modules: monitoring,

etection, and fault injection modules.

The platform is composed of a cloud cluster including two hy-

ervisors and several VMs. The number of VMs is dictated by the

arget service needs (7 for the MongoDB case study and 3 for the

learwater case study). In addition, the monitoring entity and the

ata processing entity are respectively deployed on one VM each.

he monitoring entity encompasses a database centralizing data

ollected from the target service VMs. The data processing entity

uns the processing tasks of each service VM in parallel. The work-

oad and the fault injection entity are deployed on the same VM.

his facilitates the start of an experimentation which includes the

aunch of a workload, of the monitoring, and of an injection cam-

aign.

The platform is a VMware vSphere 5.1 private cloud composed

f 2 servers Dell Inc. PowerEdge R620 with Intel Xeon CPU E5-

660 2.20 GHz and 64 GB memory. Each server has a VMFS storage.

ach VM deployed for the service implementation has 2 CPUs, a 10

B memory, a 10 GB disk. VMs are connected through a 100 Mbps

etwork.

The deployment of the ADS modules on the VMs is illustrated

n Fig. 7 . The modules are described in the following.

.1. Monitoring module

For comparison purpose, monitoring data are collected from

wo monitoring sources (the hypervisor and the OS source) as de-

cribed in Section 2.1 . For both monitoring sources, observations of

ach VM are collected every 15 s.

The hypervisor monitoring source relies on the VMware infras-

ructure. Metrics are gathered from the hypervisors by means of

C. Sauvanaud et al. / The Journal of Systems and Software 139 (2018) 84–106 91

Fig. 7. Virtualized platform.

t

F

t

G

c

t

o

h

3

a

t

a

a

l

a

(

3

t

g

s

t

t

t

t

3

t

i

S

e

m

s

w

l

i

s

a

a

j

o

p

3

s

I

o

t

3

p

s

m

i

e

m

(

f

3

e

w

i

d

a

he library Pysphere 3 that communicates with the VMware SDK.

or each VM, we gather the 152 counters listed online 4 .

The OS monitoring source is carried out with Ganglia moni-

oring agents (Massie et al., 2003) installed in each service VM.

anglia is a system specially developed for the monitoring of grid

omputing and has low overhead. We configured the agents so as

o gather from each VM 224 counters listed online 5 .

Appendix A and Appendix B provide the reader with an

verview of the monitoring counters collected respectively for the

ypervisor and the OS monitoring sources.

.2. Detection module

The detection module hosts our two processing tasks (associ-

ted with the two monitoring sources) for each service VM. These

asks can be run on any machine isolated from the service VMs so

s to not disturb the execution of the target system. We tested four

lgorithms, included in the open source Python library for machine

earning Scikit-learn

6 , to implement the processing tasks.

• Random Forests (configured with 200 trees),
• Neural network (configured with an hyperbolic tangent func-

tion, as in LeCun et al., 1991), a softmax function, and a learn-

ing rate of 0.001),
• Nearest Neighbors (configured with k = 3),
• Naive Bayes (default configuration of the sklearn library).

Two other algorithms that are not used in this paper, SVM

nd Gradient Boosting, have been studied in our previous work

 Silvestre et al., 2015b).

.3. Fault injection module

An injection campaign corresponds to the execution of a cus-

omizable main script that periodically performs injections in tar-

et service VMs. Injections are carried out by injection agents in-

talled in these VMs. There is one injection agent for each error

ype in each VM of a service.

In the following, we describe the implementation of our injec-

ion agents, and the choice of the injections durations. The calibra-

ion of the intensity levels has been presented in Section 2.3 with

he fault injection entity.

.3.1. Injection agents

Agents are run and stopped through an SSH connection orches-

rated by the campaign main script. They emulate errors presented

n Section 2.3 by means of a software implementation.
3 https://pypi.python.org/pypi/pysphere .
4 https://homepages.laas.fr/ ∼csauvana/datasets/pysphere _ vm _ counters.txt .
5 https://homepages.laas.fr/ ∼csauvana/datasets/ganglia _ vm _ counters.txt .
6 http://scikit-learn.org/stable/ .

a

t

d

CPU and disk errors are emulated using the stress test tool

tress-ng 7 . CPU injections run 2 processes (there are 2 cores in

ach VM) running all the stress methods listed in the tool docu-

entation. The percentage of loading is set according to the inten-

ity level of the injection.

Disk injections start several workers writing 50 Mo and 50

orkers continuously calling the sync command, with an ionice

evel of 0. The number of writing workers is set according to the

ntensity level of the injection.

Memory injections are run by means of a python script re-

erving memory space while continuously checking whether the

mount of memory space reserved by the script corresponds to the

mount set by the intensity level of the injection.

Finally, we use the Linux kernel tools iptables and tc for the in-

ection of network latencies on the POSROUTING chain, and iptables

n the INPUT chain for the injection of packet losses. All network

rotocols are targeted.

.3.2. Injection durations

The injection duration is calibrated so as to affect several in-

tances of workload executions (an execution lasts less than 1 s).

t is worth mentioning that a 10 min injection is long enough to

bserve the effect of the injection, compared to the 15 s of moni-

oring period.

.3.3. Pausing time

The stabilization time was manually calibrated during prior ex-

erimentations on our case studies. In our campaigns, it corre-

ponds to a large time that allows us to record relatively stable

onitoring metrics. Data records show that this time is short as it

s close to 10 min for both our case studies. However, in the inter-

st of collecting large datasets with enough representation of nor-

al behavior, we set this time to be between 100 min and 30 min

for datasets collected to make minor evaluations of detection per-

ormance).

.4. Validation method

At the end of an experimentation run for validation, the gath-

red observations are labeled and put in a dataset from which

e can separately analyze the counters from the hypervisor mon-

toring, and the counters from the OS monitoring. The resulting

atasets are respectively called the hypervisor monitoring dataset ,

nd the OS monitoring dataset of the experimentation.

An analysis corresponds to the computation of metrics char-

cterizing the ADS performance obtained from several runs of

he training and detection phase. It can be carried out using the

ataset coming from either one or two different experiments:
7 http://kernel.ubuntu.com/ ∼cking/stress-ng/ .

https://pypi.python.org/pypi/pysphere
https://homepages.laas.fr/~csauvana/datasets/pysphere_vm_counters.txt
https://homepages.laas.fr/~csauvana/datasets/ganglia_vm_counters.txt
http://scikit-learn.org/stable/
http://kernel.ubuntu.com/~cking/stress-ng/

92 C. Sauvanaud et al. / The Journal of Systems and Software 139 (2018) 84–106

Fig. 8. MongoDB deployment.

t

a

“

d

i

g

h

W

e

v

4

d

t

d

p

n

C

l

e

w

3

r

l

i

t

e

s

4

d

y

T

d

f

F

t

t

o

• When using a dataset from one experiment, we split it into a

training dataset and a validation dataset by means of a ran-

dom subsampling (we use 40% of observations as the training

dataset and 60% for the validation dataset).
• When using two datasets from two experiments, one dataset is

used as for training the models and the other one for valida-

tion.

An analysis can address for example the error detection per-

formance, or the sensitivity analysis of the detection performance

to the injection durations using one particular dataset. For a given

analysis, the selected dataset(s) is(are) used with different subsam-

pling and models are used with different random seeds for the ini-

tialization of their training (when needed by the implementation

of the supervised algorithm).

In this paper, a test corresponds to a run of a training phase and

a detection phase using one combination of subsampled datasets

and initialized models. An analysis corresponds to 100 tests.

4. Case studies

Two case studies were selected to validate our work. One case

study was selected to be representative of a well established and

popular service and the second one was selected as a more re-

cent case study which is up-to-date with brand new cloud related

research topics. The first case study is MongoDB and it is repre-

sentative of nowadays storage services used either for personal or

business uses. Nowadays, MongoDB is notably the most popular

document store solution

8 . The second case study is an example

of recent telecommunication functions that make use of the cloud

marketing model while Also, it is worth mentioning that both case

studies are open source.

MongoDB is used to derive preliminary conclusions on the de-

tection performance of our ADS. More detailed analyses are carried

out for the Clearwater case study. For both of them we describe

their deployment on our platform, the workload generator used in

the experimentations, and the set of experimentations carried out

for this case study together with the purpose of these experiments.

For space limitation concerns, the paper does not present SLAV

related results with the MongoDB case. The SLAV related results

are provided for the Clearwater case study because VNF are more

SLA bounded due to their very nature related to the telecommuni-

cation domain.

4.1. MongoDB

MongoDB is a NoSQL database that provides scalable and fault-

tolerant data storage. It offers scalable storage service by allowing

cloud operators to evenly split data in L partitions or shards across

a cluster of VMs. To increase the storage capacity of the cluster, op-

erators may add nodes as the system is run. In addition, MongoDB

uses partition replication, which is the most common mechanism

to enforce data durability and availability in storage systems. Each

partition has a predefined number of replicas K + 1 , which allows

the system to tolerate up to K VM failures. Copies of the same par-

tition form the so-called replica set. Depending on the scheme to

maintain replicas, replication is divided in two broad groups: pri-

mary/secondary and multi-primary schemes. Essentially they dif-

fer on how requests that modify data are handled. Our MongoDB

deployment takes into account the first scheme. In addition, our

deployment relies on load balancing between replicas to limit the

impact of cloud anomalies on a cluster.

In more detail, we deployed MongoDB release 2.4.8 considering

two partitions (L = 2), and a replication factor of 2 (i.e. each par-
8 https://db-engines.com/en/ranking .

c

M

u

ition is composed of K + 1 = 3 VMs). We consequently deployed

 cluster of seven VMs, a query router and six document stores,

replica1” to “replica6” (see Fig. 8). The query router of MongoDB

istributes evenly the data items between the two partitions, us-

ng the hash code of documents’ keys. In MongoDB, there is a sin-

le primary replica on each replica set. Replicas regularly exchange

eartbeat messages to elect the primary copies as failures occur.

e used the default timeout setting of 10 s for primary replica

lection. This set-up forms a small but resilient, fault-tolerant ser-

ice.

.1.1. Workload for MongoDB

A workload generator for NoSQL databases loads a cluster with

ata and runs the workload for validation purposes. This genera-

or allows definition of workload settings, such as document size

istribution, the rate of query per second, and the distribution

opularity of documents. Four types of queries can be generated,

amely Create, Read, Update, and Delete (CRUD) queries.

We investigate the performance of MongoDB using the Yahoo!

loud Serving Benchmark (YCSB) (Cooper et al., 2010), a work-

oad generator and benchmark tool for the performance of differ-

nt “key-value” and “cloud” serving stores. In a preliminary setup,

e use YCSB to load documents whose size varies from 1KB to

KB. Once the database is loaded, we set-up YCSB to generate a

ead/update workload. The popularity of documents follows a Zipf-

ike distribution. We evaluated the MongoDB performance in serv-

ng two different workloads respectively with: a constant average

hroughput of 30 0 0 queries per second (called W_A), and an av-

rage throughput varying every 10 min, the number of queries per

econd randomly selected in the interval [50 0: 30 0 0] (called W_B).

.1.2. MongoDB experimentations

For MongoDB, we only consider the detection of errors and the

iagnosis of the type of errors affecting the observed VM. The anal-

ses related to SLAV are carried out for the Clearwater case study.

able 2 summarizes the experiments performed for MongoDB and

iscussed in Section 5 . We first compare the error detection per-

ormance of the four learning algorithms used in the ADS (Random

orests, Neural Networks, Nearest Neighbors, Naive Bayes) to select

he most suitable one to be used in our ADS to perform the rest of

he analyses, related to the diagnosis of error type and the impact

f a varying workload compared to a constant one.

Table 3 shows the parameters of the fault injection campaigns

arried out in the two experimentations that we will present for

ongoDB including all combinations of injections. The analyses

se OS monitoring data collected from these experimentations.

https://db-engines.com/en/ranking

C. Sauvanaud et al. / The Journal of Systems and Software 139 (2018) 84–106 93

Table 2

Description and implementation of analyses on MongoDB.

Analysis Implementation

Error detection The selected dataset(s) are labelled 1 if they are identified as corresponding to an error, 0 otherwise.

Algorithms comparison The selected dataset(s) are labelled for error detection. Then, all algorithms are trained with the same

training-purposed observations, and they are validated with the same validation-purposed observations.

Diagnosis of the error type We first select a type of anomaly to be detected and dataset(s). The selected dataset(s) observations are labelled 0 if

they are normal observations, and from 1 to 5 if they correspond to the selected type of anomaly in the observed

VM, originating from one of our five error types.

Error detection with a varying workload We compare the detection performance of our ADS obtained from a dataset collected while our service is serving a

constant workload and obtained from a dataset collected while our service is serving a varying workload.

Table 3

Injection campaign parameters for the two experimentations.

Experiment Campaign parameters

• l _ v m = { replica 1 , replica 2 , replica 3 , replica 4 , replica 5 , replica 6 }
M

• l _ type = { CPU, memory, disk, latency, packet _ loss }
(15 days of monitoring, • pause = 100 min

constant workload) • l _ intensity = { 1 : 10 }
• in j ect _ d uration = 10 min
• Workload W_A
• l _ v m = { replica 1 , replica 2 , replica 3 , replica 4 , replica 5 , replica 6 }

N • l _ type = { CPU, memory, disk, latency, packet _ loss }
(15 days of monitoring, • pause = 100 min

varying workload) • l _ intensity = { 1 : 10 }
• in j ect _ d uration = 10 min
• Workload W_B

Fig. 9. Clearwater deployment.

4

4

t

f

a

s

w

a

B

C

r

l

a

S

a

H

c

w

i

s

t

o

f

t

C

s

t

f

c

D

t

f

n

c

d

t

n

B

p

VMs.
.2. Clearwater

.2.1. Description

The service is an open source VNF named Clearwater. Clearwa-

er is an open source implementation of an IMS for cloud plat-

orms. It provides voice and video calls based on the Session Initi-

tion Protocol (SIP), and messaging applications. It implements key

tandardized interfaces and functions of an IMS (except a core net-

ork) which enable industries to easily deploy, integrate and scale

n IMS. Clearwater encompasses six software components, namely

ono, Sprout, Homestead, Homer, Ralf, and Ellis shown in Fig. 9 .

Bono is the SIP proxy implementing the Proxy-Call/Session

ontrol Functions (P-CSCF). It handles the users requests and

outes them to Sprout. It also performs Network Address Trans-

ation traversal mechanisms.

Sprout is the IMS SIP router receiving requests from Bono

nd routing them to the adequate endpoints. It implements some

erving-CSCF (S-CSCF) and Interrogating-CSCF (I-CSCF) functions

nd gets the required users profiles and authentication data from

omestead. Sprout can also call application servers and actually

ontains itself a multimedia telephony (MMTel) application server,

hose data are stored in Homer (when calls are configured to use

ts services).

Homestead is an HTTP RESTful server. It either stores home

ubscriber server (HSS) data in a Cassandra database and masters
he data (i.e. information about subscribed services and locations),

r pulls data from another IMS compliant HSS. The HSS mirror

unction is considered as part of the I-CSCF and S-CSCF functions.

Thus, Bono, Sprout, and Homestead work together to con-

rol the sessions initiated by users and handle the entire

SCF.

Homer is an XML Document Management Server (XDMS)

erver with an XML configuration access protocol server (XCAP) in-

erface, and runs a Cassandra database. It stores configuration in-

ormation about the MMTel services.

Ralf is the charging trigger function (CTF). It bills the events

ollected by Bono and Sprout and reports them to a Charging

ata Function server (this server is not included in the Clearwa-

er project).

Ellis is a provisioning portal offering a web interface to users

or testing purposes.

Clearwater scales-out horizontally by means of a simple domain

ame system (DNS) load balancing mechanism. Our testbed en-

ompasses Bono, Sprout, Homestead and Homer, each of which is

eployed on one VM (see Fig. 9). In this study, the billing func-

ion is not configured, so Ralf is not included in our testbed,

either is the testing component Ellis. We focus our work on

ono, Sprout and Homestead constituting the entire CSCF: we

erform injections and provide evaluation results for these three

94 C. Sauvanaud et al. / The Journal of Systems and Software 139 (2018) 84–106

Table 4

Description and implementation of analyses on Clearwater datasets.

Analysis Implementation

Error detection The selected observations are labelled 1 if they are identified as corresponding to an error, 0 otherwise.

SLAV detection The selected observations are labelled 0 if they are normal, and 1 if they correspond to an SLAV.

Diagnosis of the anomalous VM We first select a type of anomaly to be detected and dataset(s). The selected observations are labelled 0 if they are

normal, and from 1 to 3 if they correspond to the selected type of anomaly originating from one of three observed VM

(i.e., Bono, Sprout and Homestead).

Diagnosis of the error type We first select a type of anomaly to be detected and dataset(s). The selected dataset(s) observations are labelled 0 if they

are normal observations, and from 1 to 5 if they correspond to the selected type of anomaly in the observed VM,

originating from one of our five error types.

Sensitivity to the intensity level The detection models are trained on normal observations and on anomalous observations representing injection intensity

levels 4 or 7. The validation of the models is however performed on a dataset with normal observations and anomalous

observations representing all seven intensity levels.

Sensitivity to the datasets sizes Several subsamplings of the same dataset are performed to obtain data subsets containing the same distribution of

anomalous observations but with a varying total number of observations. The detection performances associated to each

data subset (split into training and validation subsets) are then evaluated.

Sensitivity to the injection duration The detection performances obtained from datasets related to experimentations with different injection durations are

compared.

Lifetime of detection models Models are trained from a dataset X collected during a first experimentation. They are then validated using a dataset Y
collected during an experimentation n days after the end of the first experimentation. The detection performance

obtained from this study is compared to the detection performance obtained from the study of X randomly split and

used for both training and validation.

Comparison of the monitoring sources The detection performance obtained from the study of the hypervisor monitoring data of an experimentation is compared

to the detection performance obtained from the study of a OS monitoring data of the same experimentation.

Table 5

Injection campaign parameters for the four experimentations.

Experiment Campaign parameters

• l _ v m = { Bono, Sprout, Homestead}
All experiments • l _ type = { CPU, memory, disk, latency, packet _ loss }
A

• l _ intensity = { 1 : 10 }
(10 days of monitoring) • in j ect _ d uration = 10 min

• pause = 100 min

B • l _ intensity = { 5 , 10 }
(2 days of monitoring) • in j ect _ d uration = 10 min

• B was recorded 1 month after the end of A

• pause = 40 min

C • l _ intensity = { 5 , 10 }
(2 days of monitoring) • in j ect _ d uration = 4 min

• The injection campaign was run twice in order for

C to gather approximatly as many observations as B
• pause = 35 min

D • l _ intensity = { 5 , 10 }
(2 days of monitoring) • in j ect _ d uration = 10 min

• D was recorded 1 week after the end of B
• pause = 30 min

p

m

p

s

t

t

i

t

w

c

T

5

t

p

a
4.2.2. Workload for Clearwater

IMS workloads can be emulated by means of the SIPp bench-

mark 9 . The benchmark contains a workload that can be configured

with a number of calls per second (i.e. a load parameter) to be

sent to the IMS and a scenario. The execution of a scenario corre-

sponds to a call. A scenario is described in terms of SIP transac-

tions in XML. A SIP transaction corresponds to a SIP message to

be sent and an expected SIP response message. A call fails when

a transaction fails. A transaction may fail for two reasons: either a

message is not received within a fixed time window (i.e., the time-

out), or an unexpected message is received. Unexpected messages

are identified by the HTTP error codes 500 (Internal Server Error),

503 (Service Unavailable) and 403 (Forbidden). In this case study,

the PUR corresponds to the percentage of unsuccessful calls.

The scenario run for our experimentations simulates a standard

call between two users and encompasses the standard SIP REGIS-

TER, INVITE, UPDATE, and BYE messages. The scenario is available

online 10 . Timeouts are set to 10 s as in Cao et al. (2015) .

4.2.3. Clearwater experimentations

For Clearwater, we will present in Section 6 a more complete

set of experimentations encompassing the analyses of the two

types of anomalies (errors and SLAVs), and the two diagnosis levels

(identification of the anomalous VM and the type of error within

the observed VM). In addition, we run several sensitivity analyses

to investigate the impact of various parameters on the detection

performance of our ADS. Moreover, we compare the detection per-

formance when using hypervisor monitoring data or OSs monitor-

ing data. Finally, we evaluate the lifetime of the ADS trained mod-

els. In other words, we evaluate the time after which the detec-

tion performance of the ADS decreases and the models need to be

trained again. Such analyses are summarized in Table 4 .

In order to carry out these analyses, we ran four experiments

from which we collected four datasets, referred to as A , B, C, and

D. The configuration of these experiments is described in Table 5 .

In the first experiment, all combinations of injections are consid-

ered. The resulting dataset A is used as a reference for compari-

son. The second experiment is run to analyse the lifetime of the

detection models one month after the training phase, i.e., if their
9 http://sipp.sourceforge.net/index.html .
10 https://homepages.laas.fr/csauvana/sipp _ scenario/issre2016 _ sipp _ scenario.xml .

F

a

e
erformance is still acceptable. Consequently, B is collected one

onth after A . The third experiment is run to evaluate the im-

act of the injection durations on the detection performance. Con-

equently, 4 min injection durations are considered in C compared

o 10 min for dataset A . The fourth experiment is run to evaluate

he lifetime of models after one week of detection. The same fault

njection durations are considered as for B. Indeed, they are longer

han in C and enable to collect more anomalous data. To this aim,

e collected the corresponding dataset D one week after B. The

ampaigns parameters of our experimentations are presented in

able 3 .

. MongoDB validation results

Validation of our ADS using MongoDB is first performed with

he four popular supervised machine learning algorithms (listed

reviously) with respect to their error detection performance

nd their execution times. The most suitable algorithm (Random

orests algorithm) is then used to assess our ADS error detection

nd diagnosis performance.

When not mentioned otherwise, the datasets collected from the

xperiments are randomly subsampled for each analysis carried

http://sipp.sourceforge.net/index.html
https://homepages.laas.fr/csauvana/sipp_scenario/issre2016_sipp_scenario.xml

C. Sauvanaud et al. / The Journal of Systems and Software 139 (2018) 84–106 95

Fig. 10. Comparison of binary detection results using four different supervised learning algorithms.

Table 6

Training and detection times (ms).

Phase Measures Naive Neural Random Nearest

Bayes network forests neighbors

Training Mean 0.010 10.322 0.919 0.064

standard 0.004 1.824 0.130 0.017

deviation

Detection Mean 0.015 0.168 0.102 0.82

standard 0.005 0.045 0.021 0.193

deviation

o

r

s

b

s

w

5

p

t

N

t

t

w

l

o

e

h

i

t

t

c

t

i

s

t

t

i

o

0

a

q

t

d

i

s

c

p

t

T

e

f

c

o

d

5

w

r

p

w

t

s

w

v

f

m

5

m

s

m

ut, so that anomalous observations for each anomaly type rep-

esent 2% of the total amount of observations.

As similar conclusions are obtained for the various replicas, we

how the results of only one replica. These results was validated

y means of 10-folds cross validation.

For space limitation concerns, we do not present SLA-related re-

ults for the case of MongoDB. The reader can refer to our previous

ork (Silvestre et al., 2015b) for further detail about this point.

.1. Comparative analysis of supervised learning algorithms

We assessed and compared four different types of popular su-

ervised machine-learning algorithms to analyze their error detec-

ion efficiency, namely Random Forests, Neural Networks, Nearest

eighbors and Naive Bayes. The results reported in Fig. 10 present

he ROC and PR AUCs computed using dataset M (whose charac-

eristics are presented in Table 3 , using in particular a constant

orkload) for an error detection without diagnosis of the anoma-

ous VM nor the error type. In our context, the best results are

btained with Random Forests and Nearest Neighbors with an av-

rage ROC and PR AUC above 0.95. The two other algorithms ex-

ibit a low error detection performance (e.g., the average PR AUC

s around 0.35 for Neural Networks).

To provide better insights about the training and detection

imes of these algorithms, Table 6 presents the mean times for

he processing of a single observation (composed of 227 counters),

omputed during the training phase of the algorithms and the de-

ection phase. These times are computed on a 64 bits Intel Core

7 2.10 GHz processor. The computed mean values correspond to a

ample of 100 executions of training and detection.

It can be noticed that the training time of Neural Networks is 10

imes higher than for the other algorithms. The associated detec-

ion time remains low with a mean of 0.168 ms. The Naive Bayes
s the algorithm with the lowest training and detection times with

nly 0.010 ms and 0.015 ms. The longest detection time (around

.82 ms) is observed with the Nearest Neighbors algorithm. The

lgorithm indeed computes the Euclidean distances between the

uery vector (i.e. the new observation on which to make a predic-

ion) and all points from the training data. In comparison, the Ran-

om forests algorithm for instance, only needs to evaluate some

nequalities once the trees are grown, which is only few CPU in-

tructions. This time is still acceptable in our context, especially

onsidering that in our experimentations the system monitoring

eriod is set to 15 s. Finally, the Random Forests has a training

ime mean of 0.919 ms and a detection time almost 10 times lower.

he latter is higher compared to the Naive Bayes algorithm. How-

ver, it remains low and acceptable in our context.

Considering the criteria related both to the error detection per-

ormance and to the training and detection execution times, we

an conclude that Random Forests is the best algorithm to be used

nline, in particular due to its low detection time and high error

etection efficiency.

.2. Diagnosis of the error type: datasets M and N

Figs. 11 and 12 present the ROC and PR AUCs for error detection

ith a diagnosis of the error type occurring in the observed VM

espectively for the datasets M and N (whose characteristics are

resented in Table 3 , using in particular a constant and a varying

orkload) based on the Random Forests algorithm.

The error detection performance with a diagnosis of the error

ype is excellent for both datasets M and N corresponding to ob-

ervations collected respectively under a constant and a varying

orkload. Average ROC and PR AUCs are indeed above 0.99. The

arying workload executed during the collection of N hardly af-

ects the detection and diagnosis performance as all the results re-

ain higher than 0.95 for both ROC and PR AUCs.

.3. Discussion

With this case study we evaluated the error detection perfor-

ance of our ADS using several common machine learning clas-

ifiers and observations collected based on an OS monitoring. The

ain conclusions derived are the following:

• In terms of detection performance and associated training and

detection times, the Random Forests algorithm is the most

adapted to our context. We validated the adequacy of the

96 C. Sauvanaud et al. / The Journal of Systems and Software 139 (2018) 84–106

Fig. 11. Error detection with a diagnosis of the error type occurring in the observed VM using dataset M .

Fig. 12. Error detection with a diagnosis of the error type occurring in the observed VM using dataset N .

S

o

p

d

b

l

f

r

r

p

a

a

m

6

a

a

i

6

s

d

p
Random Forests algorithm for detecting the injected errors and

diagnosing the error type occurring in the observed VM, under

both a constant and varying workload.
• The results reported in this section are based on the observa-

tions collected from only one replica. Similar results are ob-

tained when using the observations from the other replicas.

This is potentially due to the fact that all replicas run a simi-

lar application in our experimental setup and the workload be-

tween all replicas is well balanced.
• Furthermore, we analyzed the top 10 counters that have the

most significant impact on the error detection and diagno-

sis performance of the ADS 11 . This analysis showed that these

counters depend on the error type to be detected and diag-

nosed. Also, we observed that a wide range a memory counters

is among the top 10 lists. We believe that this is due to the fact

that the MongoDB database is memory oriented. Indeed, as all

the data are mapped in memory, MongoDB enables the mem-

ory counters to be good predictors of anomalous behaviors in

the database.

A further validation of our ADS using the Random Forests al-

gorithm is presented in the next section for the Clearwater case

study.

6. Clearwater validation results

This section presents the validation results related to the Clear-

water case study. Section 6.1 focuses on error detection, while
11 They are selected across all trees of a model using the Gini impurity in order

to measure the quality of the trees splits.

t

f

i

s
ection 6.2 presents the results related to the detection of SLA vi-

lations. A comparative analysis with OS monitoring data is also

resented.

Following a similar method as described in Section 5.1 , the Ran-

om Forests algorithm turns out to be the algorithm leading to the

est detection performance. Results are not presented due to space

imitation. It was recorded however that they are slightly different

rom the results in Section 5.1 in that the Nearest Neighbors algo-

ithm provides very poor results. Thus, the Random Forests algo-

ithm is used for all the following ADS analyses.

When not mentioned otherwise, the results are based on hy-

ervisor monitoring data and anomalous observations in datasets

re randomly subsampled for each analysis to represent 2% of the

mount of normal observations. These results was validated by

eans of 10-folds cross validation.

.1. Detection of errors

This section is aimed at presenting the error detection and di-

gnosis performance of our ADS and includes several sensitivity

nalyses related e.g., to the distribution of anomalous observations

n the dataset or to the fault injection duration.

.1.1. Data distribution sensitivity: dataset A

As discussed in Section 2.4 , the distribution of anomalous ob-

ervations in the considered dataset is likely to influence the ADS

etection performance. To illustrate this impact, Fig. 13 (a) and (b)

resent the ROC and PR AUCs computed for a binary error detec-

ion using data observed in Bono, Sprout and Homestead, with dif-

erent distributions of anomalous observations in the dataset vary-

ng from 2% to 50%. The corresponding datasets are randomly sub-

ampled from dataset A . An increase of PR AUCs around 0.02 in

C. Sauvanaud et al. / The Journal of Systems and Software 139 (2018) 84–106 97

Fig. 13. Binary error detection with several data distributions.

Fig. 14. Error detection with a diagnosis of the anomalous VM.

a

a

N

i

(

n

p

e

n

A

c

a

6

d

o

e

c

i

d

A

S

t

t

n

s

d

o

c

o

a

S

t

t

C

b

t

i

6

e

V

a

verage is reported for all observed VMs when the percentage of

nomalous observations in the dataset increases from 2% to 50%.

evertheless, the average detection performance remains excellent

n our context for all observed VMs and all anomaly distributions

higher than 0.94). As expected, the ROC AUCs remain stable. It is

oteworthy that this result is not biased by the duration of the ex-

erimentation which is long enough in our context (10 days).

Also, these results, as the following ones, show that the study of

ither the ROC curves alone or the precision and recall alone, does

ot provide a thorough insight on the detection performance of an

DS. Indeed, in this case, while both are relatively high, the PR

urves show that even though there are only a few false positive

larms, not all anomalies are detected.

.1.2. Diagnosis of the anomalous VM: dataset A

Fig. 14 (a) and (b) plot the ROC and PR AUCs computed for the

etection of errors with the diagnosis of the anomalous VM based

n the data recorded from each observed VM. In other words, for

ach observed VM data (represented with different color boxes) we

ompute the ADS performance for the detection of errors occurring

n Bono, Sprout, and Homestead (shown on the x-axis).

The performance of the ADS for the detection of errors with a

iagnosis of the anomalous VM is relatively high. The mean ROC

UCs are about 0.99 and the averaged PR AUCs are above 0.95 for

prout and Homestead, and above 0.91 for Bono. We also notice
hat similar results are obtained with a binary detection. Indeed,

he averaged ROC AUCs are as good as in Fig. 13 (a).

Comparing the results depending on the observed VM, it can be

oticed that while the detection performance is relatively of the

ame order of magnitude from the three VMs, it is slightly more

ifficult to detect errors and diagnose the anomalous VM based

n the monitoring data collected from Bono, even for errors oc-

urring in this VM. On the other hand, the best performance is

btained with Homestead as the observed VM, even when errors

re injected in the other VMs.

Thus we conclude as a response to the question asked in

ection 2.2.2 that using data collected from a given VM also allows

o diagnose an anomaly occurring in a different VM contributing

o the same service. We also notice that the VM at the end of the

SCF chain has the best knowledge and the best prediction capa-

ility about the state of the other VMs of the chain. Lower detec-

ion and diagnosis capabilities are obtained when the observed VM

s located at the beginning of the chain (Bono).

.1.3. Diagnosis of the error type: dataset A

Fig. 15 (a) and (b) present ROC and PR AUCs computed for an

rror detection with a diagnosis of the error type in the observed

M. The results are globally satisfactory with an average value

bove 0.90, with the following exceptions.

98 C. Sauvanaud et al. / The Journal of Systems and Software 139 (2018) 84–106

Fig. 15. Error detection with a diagnosis of the error type.

6

p

r

t

u

p

t

v

w

d

e

a

t

b

r

s

i

i

d

R

l

6

c

d

c

a

n

l

d

B

R

t

t

t

M
Network latency errors are detected with a lower detection

performance, between 0.82 and 0.85 for both ROC and PR AUCs,

in particular when the observed VMs are Sprout and Homestead.

These errors are well detected from Bono, which is a proxy. This

is due to the larger impact that the proxy has on the requests

handling by the entire CSCF chain (Bono, Sprout and Homestead

compose this chain in that order, see Fig. 9). An increasing latency

indeed may affect the communication with Sprout. The network

packet loss detection provides the worst results when it is per-

formed based on the monitoring of Sprout with the average ROC

and PR AUCs around 0.89. The reason must be linked to some im-

plementation details of the routing function hosted in Sprout that

masks the impact of the error on monitoring data.

We can conclude that according to the code executed on each

VM, errors are not detected with the same detection performance.

We also notice a lower detection performance in the case of a

detection with a diagnosis of the error type in the observed VM,

compared to the binary detection (see Fig. 13). However, the diag-

nosis efficiency results are still relatively high and promising.

6.1.4. Sensitivity to the injection intensity level: dataset A

Fig. 16 (a) and (b) present the ROC and PR AUCs computed for

the error detection with a diagnosis of the error type in the ob-

served VM for a training phase run on A subsampled so as to keep

only anomalous observations with an error intensity level of 5 or

10 and for a detection phase on the entire dataset A .

These figures are to be compared with Fig. 15 (a) and (b) where

all the intensity levels of A are represented in the training dataset.

If we consider the ROC AUCs, the detection performances of

disk and memory errors are similar to results of Fig. 15 (a). The

detection of CPU errors is however lower but remains acceptable.

Nonetheless, the detection performance of latency and packet loss

errors is largely affected. They are acceptable when Bono is the ob-

served VM, but not for Sprout and Homestead. PR AUCs show the

same tendency as for the ROC AUCs, except that they are extremely

low for the detection of latency and packet loss errors.

The detection performance gets lower when the training dataset

does not include all injection intensity levels, especially for Sprout

and Homestead which exhibit averaged ROC AUCs below 0.80.

Therefore, a full injection campaign must be run for the sake of

the training of our Random Forests models.
.1.5. Sensitivity to the injection duration: dataset C
To analyze the impact of fault injection duration on the ADS

erformance, Fig. 17 (a) and (b) present the ROC and PR AUCs cor-

esponding to the detection of injected errors with a diagnosis of

he error type with 4 min injection durations (i.e. dataset C is

sed). These figures are to be compared with Fig. 15 (a) and (b) that

resent a similar analysis while considering 10 min injection dura-

ions. We observe a lower detection performance with ROC AUCs

arying between 0.97 and 0.71 across all VMs.

We performed a sensitivity analysis on the dataset size that

e do not show in this work. Results show that the difference in

ataset sizes for results in Fig. 15 and in Fig. 17 does not solely

xplain the low detection performance.

The results of a similar analysis addressing error detection with

 diagnosis of the anomalous VM, with 4 min fault injection dura-

ions, are also presented in Fig. 18 (a) and (b). These figures are to

e compared with Fig. 14 (a) and (b) obtained with injection du-

ations of 10 min. Again, the detection performance is lower when

horter injection durations are considered. The difference regard-

ng the average ROC AUCs for the 4 min case and the 10 min case

s important and can be higher than 0.10. We conclude that the

etection performance indeed depends on the injection durations.

An experimentation with 20 min injection durations was run.

esults show that the detection performance is similar to those re-

ated to the 10 min durations case.

.1.6. Lifetime of detection models: datasets A , B, and D
A critical issue when using machine learning algorithms con-

erns the frequency at which the detection models should be up-

ated with a new training phase to take into account more re-

ently collected data. We carried out several sensitivity analyses to

nswer this question. A first analysis consisted in carrying out a bi-

ary error detection using one month old models to detect anoma-

ies based on current observations (i.e., the models are trained on

ataset A and the detection performance is assessed using dataset

. An excellent detection performance was obtained with average

OC and PR AUCs higher than 0.90 for all observed VMs. However,

he results obtained in the case of a detection with a diagnosis of

he error type show that the models require a new training for

he detection performance to remain acceptable for all error types.

ore acceptable detection results are obtained with observations

C. Sauvanaud et al. / The Journal of Systems and Software 139 (2018) 84–106 99

Fig. 16. Error detection with a diagnosis of the anomalous VM with a training dataset comprising observations of only two intensity levels of errors represented in A and a

detection on all A seven intensity levels.

Fig. 17. Error detection with a diagnosis of the error type, and a dataset with 4 min injection durations.

Fig. 18. Error detection with a diagnosis of the anomalous VM, and a dataset with 4 min injection durations.

100 C. Sauvanaud et al. / The Journal of Systems and Software 139 (2018) 84–106

Fig. 19. Error detection with a diagnosis of the error type with OS monitoring data and with a training on A and a detection on B (the observations of B are collected one

month after the end of the data collection of A).

m

a

v

c

O

c

o

6

t

w

a

m

e

6

s

u

f

6

C

collected earlier, one week after the training of models (i.e., using

datasets B and D). The averaged ROC AUCs are excellent and the

average PR AUCs are excellent for the majority of error types, ex-

cept for the following cases: i) latency errors when they occur in

Homestead and Sprout, and ii) memory errors in Bono.

We performed similar analyses of the lifetime of detec-

tion models with observations collected through OS monitoring.

Fig. 19 (a) and (b) present ROC and PR AUCs computed for the er-

ror detection with a diagnosis of the error type with a training

phase based on A observations and a detection performed on B.

The detection performance is higher than when using hypervisor

monitoring data. In most cases, the ROC and PR AUCs are excel-

lent. The lowest average AUC values obtained for the detection of

latency errors in Sprout and Homestead remain acceptable. In this

case using OS monitoring data, the detection models still provide

a good detection performance after one month.

6.2. Detection of SLA violations (SLAV)

So far, we have only analyzed the performance of our ADS for

the detection and diagnosis of errors. In this section we focus on

SLA violations. The SLAV detection alarms must be handled quickly

because the service is already degraded when the alarm is being

raised. In the following analyses, P UR max is set to 2% for SLAV def-

inition.

6.2.1. Diagnosis of the anomalous VM: dataset A

Fig. 20 present the ROC and PR AUCs for the SLAV detection

with a diagnosis of the anomalous VM. These figures show that

it is possible to efficiently pinpoint the anomalous VM from each

observed VM. The ROC AUCs are indeed excellent for all observed

VMs with a mean above 0.90. The PR AUCs are acceptable but they

depend on the observed VM. We note that the best detection per-

formance with average values of PR AUCs above 0.87 is obtained

with Homestead observations.

Thus, the detection performance for the SLAV detection with a

diagnosis of the anomalous VM is generally good. It is however

lower compared to the error detection with diagnosis performance

results (see Section 6.1.2). Also, the same conclusion is obtained as

in Section 6.1.2 concerning the fact that the observed VM leading

to the best diagnosis of the anomalous VM is Homestead.

6.2.2. Comparison of hypervisor and OS based monitoring: dataset A

Fig. 21 (a) and (b) present the ROC and PR AUCs obtained for the

SLAV detection with a diagnosis of the anomalous VM, using OS
onitoring data. These figures are to be compared with Fig. 20 (a)

nd (b) which present the results of SLAV detection with hyper-

isor monitoring data. The detection performance is higher in the

ase of OS monitoring data. We can conclude that the numerous

S counters enable a better description of the VM system and in-

rease the detection performance SLA violations with a diagnosis

f the anomalous VM.

.2.3. Diagnosis of the error type: dataset A

Fig. 22 (a) and (b) present the ROC and PR AUCs computed for

he SLAV detection with a diagnosis of the error type.

Regarding the ROC AUCs, the detection performance is excellent

ith values above 0.98 across all VMs. The averaged PR AUCs are

lso excellent with means values above 0.90. The detection perfor-

ance is better than when considering the same analysis for the

rror detection (see Fig. 15).

.2.4. Sensitivity to the injection durations: dataset C
The ROC and PR AUCs related to SLAV detection with a diagno-

is of the error type, and for injection durations of 4 min (i.e. we

se dataset C) are similar to the ones obtained in Fig. 20 (a) and (b)

or injection durations of 10 min.

.3. Discussion

We hereby further discuss the main lessons learned from the

learwater case study:

• Results demonstrate that similar anomalies are not detected

with the same detection and diagnosis performance depend-

ing on the VM where the errors are injected (Bono, Sprout

or Homestead). We conclude that the application installed on

a VM may impact the performance of our ADS and there-

fore that the ADS performance depends on the case study. In

this paper, we validated our ADS on two different case stud-

ies, a NoSQL database and an IMS. Although the detection per-

formance varies, it remains good, and even excellent in many

cases.
• In more detail, we observed that it is possible to detect and di-

agnose from the observation of a VM (say VM A) an anomaly

that occurs in an other VM (say VM B). We conclude that

there exists a propagation of the effect of the anomaly occur-

ring in VM B to VM A , and this propagation can be isolated

by means of monitoring data characterizing VM A . Besides, the

best anomaly detection and diagnosis performance is not al-

ways obtained based on the observations collected from the VM

in which the errors were injected.

C. Sauvanaud et al. / The Journal of Systems and Software 139 (2018) 84–106 101

Fig. 20. SLAV detection with a diagnosis of the anomalous VM.

Fig. 21. SLAV detection with a diagnosis of the anomalous VM using OS monitoring data.

Fig. 22. SLAV detection with a diagnosis of the error type.

102 C. Sauvanaud et al. / The Journal of Systems and Software 139 (2018) 84–106

i

i

p

g

g

l

X

t

j

fi

e

N

b

m

L

M

c

s

r

V

e

c

f

r

I

a

n

T

s

t

S

C

(

w

V

a

d

a

a

F

u

t

o

c

t

r

n

m

d

a

A

i

w

d

(

L

t

(

a

C

a

• We also noticed that, using Homestead hypervisor monitoring

data leads to the best diagnosis performance for localizing the

VM at the origin of an error or an SLAV. It is however difficult

to conclude that Homestead monitoring data in general appear

to be good inputs for the detection in general. Indeed, more

data needs to be gathered on a full Clearwater deployment in

order to state whether this remark is due to the role of Home-

stead as a Cassandra database or due to its location at the end

of the CSCF chain. Notably the Ralf component, communicat-

ing with both Bono and Sprout, should be studied in order to

evaluate whether it can detect anomaly occurring in Bono and

Sprout. It is noteworthy that the same conclusion was not con-

firmed for all cases by the results based on OS monitoring data.

Additional counters in OS monitoring certainly provide enough

information for the detection from Bono and Sprout to be as

efficient.
• OS monitoring data turn out to provide better performance

than hypervisor monitoring data. As a matter of fact, we in-

vestigated the most important counters for the Random Forests

models to take classification decision. Looking at the OS moni-

toring counters, the most relevant ones are related to the TCP/IP

protocol. However, this group of counters is not available from

the hypervisor monitoring because it cannot be known directly

from an underlying hypervisor. We conclude that this group of

counters is important for the detection.
• Moreover, we performed similar analysis of the important

counters used for the diagnosis of each type of error. It turns

out that, as expected from the MongoDB case study, the impor-

tant counters are different depending on the type of error at

the origin of an anomaly to diagnose. Also, these counters are

different from the most important counters identified for the

MongoDB case study. Clearly, the most relevant counters de-

pend on the application (memory oriented database or router

for instance). This explains the difference observed in the de-

tection and diagnosis performance between the MongoDB and

Clearwater case studies.
• The lifetime of detection models is shorter when using hypervi-

sor monitoring data. Using the OS monitoring data, models still

provided a good detection performance even after one month

of execution, both for the detection of errors and SLAV.

Consequently, using a supervised machine learning algorithm

such as Random Forests, the more monitoring counters are

used, the better is the detection and diagnosis performance. We

however note that this is not the case for unsupervised learning

algorithms such as clustering. Indeed such algorithms are based

on metrics like distances or densities between observations that

tend to be large and similar in large dimensional spaces (also

known as the curse of dimensionality). A wide range of moni-

toring counters should in this case be handled with analyses of

several subspaces of counters.

We conclude that an ADS aimed at detecting errors and SLAV in

different cloud services should be validated on several case studies.

7. Related work

The wide adoption of virtualization in several application do-

mains gave rise to a large body of research work covering a variety

of topics, dealing for instance with elastic resource contention is-

sues of VMs or services (Kundu et al., 2012; Matsunaga and Fortes,

2010; Bodík et al., 2009; Silvestre et al., 2015a), server reconfigu-

ration (Cerf et al., 2016), resources and energy management (Chase

et al., 2001; Berral et al., 2010), and security (Bhat et al., 2013;

Gander et al., 2013). Other works also propose frameworks dedi-

cated to the processing of large datasets (or big data) sourced from

cloud infrastructures such as Pop (2016) . As a result, we present
n this section related works that deal with anomaly detection

n large computing systems with no regard to their deployment

aradigm.

Research works related to anomaly detection are mostly distin-

uished by the data processed for anomaly detection, and the al-

orithms applied on data to actually perform the detection.

Concerning the processed data, several papers make use of

ogs as in Salfner and Malek (2007) , Watanabe et al. (2012) ,

u et al. (2009) and Liang et al. (2006) , other make use of audit

races (Denning, 1987; Lee et al., 1999; Heberlein, 1995; Mukher-

ee et al., 1994) (both logs and audit traces correspond to text

les) and the third large family of data is monitoring data (Dean

t al., 2012; Tan et al., 2012; Zhang et al., 2013; Guan et al., 2012a;

guyen et al., 2013) (monitoring data are numerical data).

Regarding the detection algorithms, several techniques are used

ased for instance on the statistics, the probability theory or infor-

ation theory, such as in Wang et al. (2010) , Williams et al. (2007) ,

ee and Xiang (2001) , Gong et al. (2010b) and Nguyen et al. (2013) .

achine learning is a field of computer science which algorithms

an solve classification problems. The following contributions re-

pectively deal with supervised and unsupervised learning algo-

ithms for anomaly detection.

Supervised algorithms. The comparative works in

an Hulse et al. (2007) and Farshchi et al. (2015) propose

valuations of popular algorithms such as Support Vector Ma-

hines (SVM), supervised neural networks, and decision trees

or anomaly detection. Liang et al. (2007) compares three algo-

ithms for the detection of preliminary symptoms of failures in

BM BlueGene/L, namely SVM, threshold nearest neighbors and

 rule-based classifier named RIPPER. In Aleskerov et al. (1997) ,

eural networks are used for the detection of credit card frauds.

he Fa system proposed in Duan et al. (2009) centralizes failure

ignatures represented in terms of system resource consump-

ion. It relies on classification and regression trees (CART) and

VM to classify new behaviors into normal behaviors or failures.

ohen et al. (2004) applies tree-augmented bayesian networks

TAN) created from labeled data to detect service violations in

eb services. In Tan et al. (2012) , the authors focus on clouds

M systems and they propose a solution to anticipate system

ttributes values by means of Markov models whose transitions

epend on both the current state and the previous state, then the

ttributes are classified using TANs. In Zhang et al. (2008) , the

uthors use Random Forests (RF) to detect network intrusions.

inally, ALERT (Tan et al., 2010) is a system predicting anomalies

sing a clustering phase (it is an unsupervised learning algorithm)

hat enables to build groups of execution contexts, and a sec-

nd phase where decision trees are trained to detect anomalous

ontexts.

Unsupervised algorithms. In Dean et al. (2012) , anomaly detec-

ion is tackled for cloud infrastructures using unsupervised neu-

al networks, making the assumption that anomaly has prelimi-

ary symptoms expressed in system monitoring data. Regression

odels are used in Cherkasova et al. (2009) for a workload change

etection tool. The tool inspects the CPU consumption of a server

s well as the number of client transactions. Principal Component

nalysis is applied on application logs in Xu et al. (2009) and

n Lakhina et al. (2004) for the detection of anomalies in net-

ork traffic. Clustering refers to several algorithms used to group

ata. Clustering is applied in the anomaly detection tool eCAD

 Zhang et al., 2013) using system monitoring data of clouds VMs.

ikewise, Leung and Leckie (2005) and Mazel (2011) use clus-

ering algorithms for anomaly detection in network traffic. vNMF

 Miyazawa et al., 2015; Niwa et al., 2015) is a tool that detects

nomalous behaviors in VNFs using unsupervised neural networks.

lusters are considered anomalous when they are too small and far

part from the other normal clusters.

C. Sauvanaud et al. / The Journal of Systems and Software 139 (2018) 84–106 103

c

p

i

o

2

f

T

l

t

r

p

t

m

m

s

a

d

p

p

w

c

s

A

a

p

t

w

s

O

n

e

s

r

8

a

i

v

t

t

i

b

c

b

c

s

t

r

a

s

a

i

2

o

s

t

e

i

v

s

a

p

n

a

t

A

b

c

s

9

f

v

S

l

d

t

i

b

s

i

d

s

t

i

a

m

a

c

R

o

d

y

o

s

o

h

d

c

a

e

a

a

Other related works address the diagnosis of anomalies . Perf-

ompass (Dean et al., 2014) focuses on fault diagnosis with a tem-

oral analysis of fault propagation, depending on system calls. It

s dedicated to fault diagnosis once an anomaly is detected by

ther means. DAPA performance diagnostic framework (Kang et al.,

012) models the existing relationships between application per-

ormances and underlying system metrics to detect SLA violations.

he SLA violation diagnostic is performed with an unsupervised

earning algorithm. PeerWatch (Kang et al., 2010), an anomaly de-

ection and diagnosis tool, uses a correlation analysis to model the

elationship existing between the components of distributed ap-

lications, and detects an anomaly when the correlation between

hese components drops significantly. FChain (Nguyen et al., 2013)

onitors the execution of distributed applications to detect perfor-

ance anomalies and to pinpoint the faulty component by recon-

tructing the propagation patterns of abnormal change points.

In our previous work (Silvestre et al., 2015b) we defined

n approach relying on machine learning for error detection in

atabases. In Sauvanaud et al. (2015a) we presented a new unsu-

ervised algorithm based on clustering for error detection in com-

uting systems. In our most recent work (Sauvanaud et al., 2016)

e evaluated an approach relying on supervised learning for the

ase of the cloud service Clearwater while tackling the diagno-

is of an SLA violation or preliminary symptoms of SLA violations.

n online diagnosis was also proposed while either pinpointing an

nomalous VM or a high workload toward the service. In this pa-

er, we largely improved this approach into an ADS for the detec-

ion of three types of anomaly and two diagnosis, whereas related

ork focus on the detection of only one type of anomaly or one

ingle type of diagnosis. Moreover, the diagnosis is provided online.

ur ADS also has the advantage not to depend on strict synchro-

isation constraints between several components and a diagnosis

ntity. Finally, unlike some of the presented contributions, our ADS

olely relies on monitoring data. Thus, it has the advantage not to

equire any specification of the cloud services.

. Limitation

The ADS proposed in this paper exhibited high error detection

nd diagnosis performances for the two considered case studies,

n the presence of different error types and error intensities, with

ery few false positives. Nevertheless, our approach shares the in-

rinsic limitation of all supervised learning algorithms as regards

he need to have a representative and complete training dataset

n order to make good predictions on previously known (and la-

eled) data classes. Accordingly, the ADS is likely to be less effi-

ient if unknown errors occur during operation. This problem can

e mitigated by frequently re-training the models with the data

ollected continuously to monitor the target systems. In addition,

imilarly to our evaluation in, further validation should consider to

rain models from supervised learning with a subset of known er-

or types and evaluate the detection performance of the ADS with

 validation dataset containing all known error types. Another pos-

ibility could be to define a hybrid approach combining supervised

nd unsupervised learning algorithms (e.g., based on the cluster-

ng of observations like in our previous work in Sauvanaud et al.,

015b), and take advantages of the benefits of each of these classes

f algorithms while mitigating their weaknesses. The definition of

uch a hybrid approach raises some open challenges that we plan

o address in our future work.

Finally, considering the emulated error types investigated in our

xperiments, it is assumed that they are representative of the man-

festation of a large set of faults located in the guest OS, or in the

irtual resources. We still need to assess the representativeness of

uch error types and the performance of our ADS with the associ-

ted monitoring metrics when considering e.g., the impact of ap-
lication level faults or other anomalies related to virtual CPU pin-

ing on real CPU. The error emulation presented in this paper en-

bles to add these with a very quick development time for our fu-

ure work. Also, it is noteworthy that we are not claiming that our

DS can by its own cover all types of faults and errors. It should

e complementary to other approaches that are more suitable to

over other of types of anomalies. How to find the right balance is

till an open research question.

. Conclusions and future work

In this paper, we defined and experimentally evaluated the per-

ormance of a new anomaly detection system, ADS, for cloud ser-

ices. This ADS allows the detection of erroneous components and

LA violations. Two diagnosis levels are considered: at the VM

evel (i. e., diagnosis of the anomalous VM), and a more detailed

iagnosis, giving the error type at the origin of an anomaly within

he anomalous VM.

Our ADS relies on i) service-agnostic system monitoring data,

i) machine learning algorithms to classify anomalous and normal

ehavior and to perform diagnosis (in this paper we focused on

upervised learning algorithms), iii) fault injection to collect train-

ng data including anomalous samples to train the detection and

iagnosis models and to validate our ADS.

We compared the performance of our ADS based on two

ources of monitoring data: data provided by the hypervisor

hrough its API, or data collected from the OS by means of agents

nstalled in each VM involved in the service.

Data processing is carried out in a decentralized way, in par-

llel for all hypervisors, or for all VMs, depending on the type of

onitoring data, making the detection process very efficient, with

 short detection time. In particular, we have compared the effi-

iency of several classification algorithms and concluded that the

andom Forests algorithm provides in our context the best trade-

ff in terms of detection efficiency and training and detection time.

We validated our ADS using two target systems: MongoDB

atabase and Clearwater IMS. Several examples of sensitivity anal-

ses are presented to analyze the characteristics of our ADS, some

f them are summarized hereafter:

• The diagnosis of the error type or of the anomalous VM causing

an erroneous behavior of a VM, or an SLA violation is possible.
• Our ADS can adapt to constant and varying workloads.
• The two types of anomalies can be detected with a good detec-

tion performance; this performance depends on the node from

which the detection is based.
• While both hypervisor and OS monitoring data generally lead to

high detection and diagnosis performance, OS monitoring data

always leads to better results. This is due to the fact that OS

monitoring data encompasses low level metrics notably TPC/IP

metrics that are not provided in hypervisor monitoring data.
• The detection and diagnosis models need to be trained peri-

odically to adapt to dynamic changes of the execution environ-

ment and workloads. However, using OS monitoring data seems

to give good prediction during longer periods of time.

In this paper, we focused on the training on several models as-

ociated with the detection and diagnosis of anomaly for each VM

f a service. As a future work, It would also be relevant to study

ow to combine the alarms raised by different detection models to

erive comprehensive decision rules taking into account potential

orrelation of the alarms raised by several models. For instance, an

larm is raised by the ADS only if a majority of detection mod-

ls integrated in the ADS raise an alarm. Clustering algorithms can

lso be investigated based on the probabilities associated to these

larms.

104 C. Sauvanaud et al. / The Journal of Systems and Software 139 (2018) 84–106

, errors are related to the VM, we plan to inject errors related to the

 service. More generally, other classes of errors should be addressed to

 VMs, we plan to evaluate the detection perfomance of such models

o exploit one single model for all VMs providing the same redundant

e percentage of unsuccessful requests (i.e. a measure af availability),

ent metrics of SLA such as the service latency and throughput, like we

l L a t e n c y
adAve r aged
r i t eAve r a g ed
t e L a t e n c y

ted naa
cy
e raged naa
a a

e e k s s c s i
S e e k s s c s i

v i r t u a lD i s k n umbe rRe a dAve r a g e d s c s i
v i r t u a lD i s k n umb e rW r i t eAv e r a g e d s c s i
v i r t u a l D i s k r e a dO IO s c s i
v i r t u a l D i s k r e a d s c s i
v i r t u a l D i s k w r i t e O IO s c s i
v i r t u a l D i s k w r i t e s c s i

n e t b r o a d c a s t R x n i c 1
n e t b r o a d c a s t T x n i c 1
n e t b y t e sR x n i c 1
n e t d r o pp edRx n i c 1
n e t d r o pp edTx n i c 1
n e t m u l t i c a s t R x n i c 2
n e t p a c k e t sR x n i c 1
n e t p a c k e t s T x n i c 1
n e t r e c e i v e d n i c 1
n e t t r a n s m i t t e d n i c 1

o r s

i p c ong e s t i o n wa i t

vm pgpgin
vm pgpgout
vm vmeff

ime

sks

x cd s
ams
s

r s

t c p a c t i v e o p e n s
t c p a t t e m p t f a i l s
t c p c u r r e s t a b
t c p e s t a b r e s e t s
t c p i n e r r s
t c p i n s e g s
t c p o u t r s t s
t c p o u t s e g s
t c p p a s s i v e o p e n s
t c p r e t r a n s p e r c e n t a g e
t c p e x t a r p f i l t e r
t c p e x t d e l a y e d a c k l o s t
t c p e x t em b r y o n i c r s t s
t c p e x t l i s t e n d r o p s
t c p e x t t c p a b o r t o n s y n
t c p e x t t c p a b o r t o n t i m e o u t
t c p e x t t c p d s a c k o f o r e c v
t c p e x t t c pmemo r y p r e s s u r e s
t c p e x t t c p p r e q u e u e d
t c p e x t t c p s a c k s h i f t f a l l b a c k
t c p e x t t w k i l l e d
t x b y t e s e t h 0
t x b y t e s e t h 1
t x b y t e s l o
t x d r o p s e t h 1
t x e r r s e t h 1
Concerning the classes of errors considered, so far in our work

hypervisor as well as errors related to the applications running the

enlarge the spectrum of errors considered so far.

Moreover, with regard to the created models for our different

giving data related to VMs supporting the same role. The aim is t

role among a service.

Finally, in this paper SLA violation is assessed in terms of th

therefore we additionally plan to work on the assessment of differ

did in our previous work (Silvestre et al., 2015b).

Appendix A. Overview of hypervisor monitoring counters

c pu co s t o p
cpu demand
c p u e n t i t l em e n t
c p u i d l e
cpu r e ady
cpu run
cpu swapwa i t
cpu used
cpu wa i t
r e s c p u a c t a v 1
r e s c p u a c t p k 1
r e s c pu r unpk1

mem ac t i v ew r i t e
mem compressed
mem compress ionRate
mem decompress ionRate
mem llSwapInRate
mem overheadTouched

mem swapinRate
mem swapoutRate
mem zipped
mem zipSaved

d a t a s t o r e maxTo t a
da t a s t o r e numbe rRe
da t a s t o r e numbe rW
d a t a s t o r e t o t a lW r i
d a t a s t o r e w r i t e
d i s k b u sR e s e t s n a a
d i sk commandsAbor
d i s k maxTo t a lLa t e n
d i sk numberReadAv
d i s k numbe rWr i t e n
d i s k r e a d
d i s k w r i t e n a a
v i r t u a l D i s k l a r g e S
v i r t u a lD i s k med i um

Appendix B. Overview of OS monitoring counters

t x p k t s e t h 1
udp i nd a t a g r ams
u d p i n e r r o r s
udp ou t d a t a g r ams

u d p s n d b u f e r r

vm k swapd s k
vm pgma j f au l t

c p u i d l e
c p u i n t r
c p u n i c e
cpu num
cpu u s e r
cpu wio
l o a d f i f t e e n

mem cached
mem free
mem ha rdware co r rup t ed
mem mapped
mem wri teback
swap f r e e
sw a p t o t a l

b y t e s i n
b y t e s o u t
d i s k f r e e
d i s k f r e e a b s o l u t e r o o t f s
d i s k f r e e p e r c e n t r o o t f s
d i s k t o t a l
d i s k s t a t s d a i o t i m e
d i s k s t a t s d a p e r c e n t i o t i m e
d i s k s t a t s d a r e a d b y t e s p e r s e c
d i s k s t a t s d a r e a d t i m e

io busymax
i o max wa i t t
i o n r e a d
i o nw r i t e
i o r e a d s
i o w r i t e s

i cmp inadd rma
i cm p i n e r r o r s
i cmp inmsgs
i cmp ou t t imee
i p f o rwda t a g r
i p f r a g c r e a t e
i p f r a g f a i l s
i p f r a g o k s
i p i n a d d r e r r o
i p i n d i s c a r d s

p k t s i n
p k t s o u t
r x b y t e s e t h 0
r x b y t e s e t h 1
r x b y t e s l o
r x d r o p s e t h 1
r x e r r s e t h 1
r x p k t s e t h 1

C. Sauvanaud et al. / The Journal of Systems and Software 139 (2018) 84–106 105

R

A

A

B

B

B

B

C

C

C

C

C

C

C

C

D

D

D

D

D

E

F

G

G

G

G

G

G

H

K

K

K

K

L

L

L

L

L

L

L

M

M

M

M

M

M

N

N

P

S

S

S

S

S

eferences

leskerov, E., Freisleben, B., Rao, B., 1997. Cardwatch: a neural network based

database mining system for credit card fraud detection. In: Computational In-

telligence for Financial Engineering (CIFEr), 1997., Proceedings of the IEEE/IAFE
1997, pp. 220–226. doi: 10.1109/CIFER.1997.618940 .

vizienis, A., Laprie, J.-C., Randell, B., Landwehr, C., 2004. Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Depend. Secure Comput.

1 (1), 11–33. doi: 10.1109/TDSC.2004.2 .
erral, J.L., Goiri, I.n., Nou, R., Julià, F., Guitart, J., Gavaldà, R., Torres, J., 2010. Towards

energy-aware scheduling in data centers using machine learning. In: Proceed-

ings of the 1st International Conference on Energy-Efficient Computing and Net-
working. ACM, New York, NY, USA, pp. 215–224. doi: 10.1145/1791314.1791349 .

hat, A.H. , Patra, S. , Jena, D. , 2013. Machine learning approach for intrusion detec-
tion on cloud virtual machines. Int. J. Appl. Innov. Eng. Manage. 2 (6), 56–66 .

odík, P. , Griffith, R. , Sutton, C. , Fox, A. , Jordan, M. , Patterson, D. , 2009. Statistical
machine learning makes automatic control practical for internet datacenters. In:

Proceedings of the 2009 Conference on Hot Topics in Cloud Computing. USENIX
Association, Berkeley, CA, USA .

radley, A.P. , 1997. The use of the area under the ROC curve in the evaluation of

machine learning algorithms. Pattern Recognit. 30 (7), 1145–1159 .
ao, L., Sharma, P., Fahmy, S., Saxena, V., 2015. Nfv-vital: a framework for character-

izing the performance of virtual network functions. In: Network Function Virtu-
alization and Software Defined Network (NFV-SDN), 2015 IEEE Conference on,

pp. 93–99. doi: 10.1109/NFV-SDN.2015.7387412 .
arrozza, G., Cotroneo, D., Russo, S., 2008. Software faults diagnosis in complex OTS

based safety critical systems. In: 2008 Seventh European Dependable Comput-

ing Conference, pp. 25–34. doi: 10.1109/EDCC-7.2008.26 .
erf, S. , Berekmeri, M. , Robu, B. , Marchand, N. , Bouchenak, S. , 2016. Cost function

based event triggered model predictive controllers-application to big data cloud
services. In: 55th IEEE International Conference on Decision and Control .

hase, J.S., Anderson, D.C., Thakar, P.N., Vahdat, A.M., Doyle, R.P., 2001. Managing
energy and server resources in hosting centers. SIGOPS Oper. Syst. Rev. 35 (5),

103–116. doi: 10.1145/502059.502045 .

herkasova, L., Ozonat, K., Mi, N., Symons, J., Smirni, E., 2009. Automated anomaly
detection and performance modeling of enterprise applications. ACM Trans.

Comput. Syst. 27 (3), 6:1–6:32. doi: 10.1145/1629087.1629089 .
ohen, I. , Goldszmidt, M. , Kelly, T. , Symons, J. , Chase, J.S. , 2004. Correlating instru-

mentation data to system states: a building block for automated diagnosis and
control. In: Proceedings of the 6th Conference on Symposium on Opearting Sys-

tems Design & Implementation - Volume 6. USENIX Association, Berkeley, CA,

USA . 16–16
ooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R., 2010. Benchmarking

cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on
Cloud Computing. ACM, New York, NY, USA, pp. 143–154. doi: 10.1145/1807128.

1807152 .
otroneo, D., Simone, L.D., Natella, R., 2017. Nfv-bench: a dependability benchmark

for network function virtualization systems. IEEE Trans. Netw. Serv. Manage. PP

(99) . 1–1. doi: 10.1109/TNSM.2017.2733042 .
avis, J. , Goadrich, M. , 2006. The relationship between precision-recall and roc

curves. In: Proceedings of the 23rd International Conference on Machine Learn-
ing. ACM, pp. 233–240 .

ean, D.J., Nguyen, H., Gu, X., 2012. Ubl: Unsupervised behavior learning for pre-
dicting performance anomalies in virtualized cloud systems. In: Proceedings of

the 9th International Conference on Autonomic Computing. ACM, New York, NY,

USA, pp. 191–200. doi: 10.1145/2371536.2371572 .
ean, D.J. , Nguyen, H. , Wang, P. , Gu, X. , 2014. Perfcompass: toward runtime per-

formance anomaly fault localization for infrastructure-as-a-service clouds. 6th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 14). USENIX

Association, Philadelphia, PA .
enning, D., 1987. An intrusion-detection model. IEEE Trans. Softw. Eng. SE-13 (2),

222–232. doi: 10.1109/TSE.1987.232894 .
uan, S. , Babu, S. , Munagala, K. , 2009. Fa: a system for automating failure diag-

nosis. In: 2009 IEEE 25th International Conference on Data Engineering. IEEE,

pp. 1012–1023 .
TSI, 2012. Technical Report 103 125 v1.1.1. Cloud; Slas for Cloud Ser-

vices . http://www.etsi.org/deliver/etsi _ tr/103100 _ 103199/103125/01.01.01 _ 60/tr _
103125v010101p.pdf

arshchi, M., Schneider, J.G., Weber, I., Grundy, J., 2015. Experience report: anomaly
detection of cloud application operations using log and cloud metric correlation

analysis. In: Software Reliability Engineering (ISSRE), 2015 IEEE 26th Interna-

tional Symposium on, pp. 24–34. doi: 10.1109/ISSRE.2015.7381796 .
ander, M. , Felderer, M. , Katt, B. , Tolbaru, A. , Breu, R. , Moschitti, A. , 2013. Anomaly

Detection in the Cloud: Detecting Security Incidents via Machine Learning.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 103–116 .

ong, Z., Gu, X., Wilkes, J., 2010a. Press: predictive elastic resource scaling for cloud
systems. In: 2010 International Conference on Network and Service Manage-

ment, pp. 9–16. doi: 10.1109/CNSM.2010.5691343 .

ong, Z. , Gu, X. , Wilkes, J. , 2010b. Press: predictive elastic resource scaling for cloud
systems. In: 2010 International Conference on Network and Service Manage-

ment. IEEE, pp. 9–16 .
uan, Q., Chiu, C.-C., Zhang, Z., Fu, S., 2012a. Efficient and accurate anomaly identi-

fication using reduced metric space in utility clouds. In: Networking, Architec-
ture and Storage (NAS), 2012 IEEE 7th International Conference on, pp. 207–216.

doi: 10.1109/NAS.2012.30 .

uan, Q., Fu, S., 2013. Adaptive anomaly identification by exploring metric subspace
in cloud computing infrastructures. In: 2013 IEEE 32nd International Sympo-

sium on Reliable Distributed Systems, pp. 205–214. doi: 10.1109/SRDS.2013.29 .
uan, Q. , Zhang, Z. , Fu, S. , 2012b. Ensemble of bayesian predictors and decision trees

for proactive failure management in cloud computing systems. J. Commun. 7

(1), 52–61 .
eberlein, L. , 1995. Network Security Monitor (nsm)–Final Report .

ang, H., Chen, H., Jiang, G., 2010. Peerwatch: a fault detection and diagnosis tool
for virtualized consolidation systems. In: Proceedings of the 7th International

Conference on Autonomic Computing. ACM, New York, NY, USA, pp. 119–128.
doi: 10.1145/1809049.1809070 .

ang, H. , Zhu, X. , Wong, J.L. , 2012. Dapa: diagnosing application performance

anomalies for virtualized infrastructures. Presented as part of the 2nd USENIX
Workshop on Hot Topics in Management of Internet, Cloud, and Enterprise Net-

works and Services. USENIX, Berkeley, CA .
anoun, K. , Spainhower, L. , 2008. Dependability Benchmarking for Computer Sys-

tems. Wiley-IEEE Computer Society Pr .
undu, S., Rangaswami, R., Gulati, A., Zhao, M., Dutta, K., 2012. Modeling virtual-

ized applications using machine learning techniques. SIGPLAN Not. 47 (7), 3–14.
doi: 10.1145/2365864.2151028 .

akhina, A., Crovella, M., Diot, C., 2004. Diagnosing network-wide traffic anomalies.

In: Proceedings of the 2004 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications. ACM, New York, NY, USA,

pp. 219–230. doi: 10.1145/1015467.1015492 .
eCun, Y. , Kanter, I. , Solla, S.A. , 1991. Second order properties of error surfaces:

learning time and generalization. In: Advances in Neural Information Process-
ing Systems, pp. 918–924 .

ee, W., Stolfo, S., Mok, K., 1999. A data mining framework for building intrusion

detection models. In: Security and Privacy, 1999. Proceedings of the 1999 IEEE
Symposium on, pp. 120–132. doi: 10.1109/SECPRI.1999.766909 .

ee, W., Xiang, D., 2001. Information-theoretic measures for anomaly detection. In:
Security and Privacy, 2001. S P 2001. Proceedings. 2001 IEEE Symposium on,

pp. 130–143. doi: 10.1109/SECPRI.2001.924294 .
eung, K. , Leckie, C. , 2005. Unsupervised anomaly detection in network intrusion

detection using clusters. In: Proceedings of the Twenty-eighth Australasian Con-

ference on Computer Science - Volume 38. Australian Computer Society, Inc.,
Darlinghurst, Australia, Australia, pp. 333–342 .

iang, Y., Zhang, Y., Jette, M., Sivasubramaniam, A., Sahoo, R., 2006. Bluegene/l fail-
ure analysis and prediction models. In: Dependable Systems and Networks,

20 06. DSN 20 06. International Conference on, pp. 425–434. doi: 10.1109/DSN.
2006.18 .

iang, Y. , Zhang, Y. , Xiong, H. , Sahoo, R. , 2007. Failure prediction in IBM bluegene/l

event logs. In: Seventh IEEE International Conference on Data Mining (ICDM
2007). IEEE, pp. 583–588 .

assie, M.L. , Chun, B.N. , Culler, D.E. , 2003. The ganglia distributed monitoring sys-
tem: design, implementation and experience. Parallel Comput. 30, 2004 .

atsunaga, A., Fortes, J.A.B., 2010. On the use of machine learning to predict the
time and resources consumed by applications. In: Cluster, Cloud and Grid Com-

puting (CCGrid), 2010 10th IEEE/ACM International Conference on, pp. 495–504.

doi: 10.1109/CCGRID.2010.98 .
azel, J. , 2011. Unsupervised Network Anomaly Detection. INSA de Toulouse

Ph.D.Thesis .
ichie, D., Spiegelhalter, D.J., Taylor, C.C., Campbell, J. (Eds.), 1994. Machine Learn-

ing, Neural and Statistical Classification. Ellis Horwood, Upper Saddle River, NJ,
USA .

iyazawa, M., Hayashi, M., Stadler, R., 2015. vnmf: distributed fault detection using
clustering approach for network function virtualization. In: 2015 IFIP/IEEE In-

ternational Symposium on Integrated Network Management (IM), pp. 640–645.

doi: 10.1109/INM.2015.7140349 .
ukherjee, B., Heberlein, L., Levitt, K., 1994. Network intrusion detection. Netw. IEEE

8 (3), 26–41. doi: 10.1109/65.283931 .
guyen, H., Shen, Z., Tan, Y., Gu, X., 2013. Fchain: toward black-box online fault

localization for cloud systems. In: Distributed Computing Systems (ICDCS), 2013
IEEE 33rd International Conference on, pp. 21–30. doi: 10.1109/ICDCS.2013.26 .

iwa, T., Miyazawa, M., Hayashi, M., Stadler, R., 2015. Universal fault detection

for NFV using som-based clustering. In: Network Operations and Manage-
ment Symposium (APNOMS), 2015 17th Asia-Pacific, pp. 315–320. doi: 10.1109/

APNOMS.2015.7275446 .
op, D. , 2016. Machine learning and cloud computing: survey of distributed and

saas solutions. CoRR abs/1603.08767 .
alfner, F., Malek, M., 2007. Using hidden semi-Markov models for effective online

failure prediction. In: Reliable Distributed Systems, 2007. SRDS 2007. 26th IEEE

International Symposium on, pp. 161–174. doi: 10.1109/SRDS.2007.35 .
auvanaud, C., Lazri, K., Kaâniche, M., Kanoun, K., 2016. Anomaly detection and root

cause localization in virtual network functions. In: 27th IEEE International Sym-
posium on Software Reliability Engineering, ISSRE 2016, Ottawa, ON, Canada,

October 23–27, 2016, pp. 196–206. doi: 10.1109/ISSRE.2016.32 .
auvanaud, C. , Silvestre, G. , Kaâniche, M. , Kanoun, K. , 2015a. Data stream clustering

for online anomaly detection in cloud applications. In: 11th European Depend-

able Computing Conference (EDCC 2015) . Paris, France.
auvanaud, C. , Silvestre, G. , Kaâniche, M. , Kanoun, K. , 2015b. Data stream clustering

for online anomaly detection in cloud applications. In: 11th European Depend-
able Computing Conference (EDCC 2015) . Paris, France.

ilvestre, G. , Sauvanaud, C. , Kaâniche, M. , Kanoun, K. , 2014. An anomaly detection
approach for scale-out storage systems. 26th International Symposium on Com-

puter Architecture and High Performance Computing . Paris, France.

https://doi.org/10.1109/CIFER.1997.618940
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1145/1791314.1791349
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0006
https://doi.org/10.1109/NFV-SDN.2015.7387412
https://doi.org/10.1109/EDCC-7.2008.26
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0009
https://doi.org/10.1145/502059.502045
https://doi.org/10.1145/1629087.1629089
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0012
https://doi.org/10.1145/1807128.1807152
http://doi.org/10.1109/TNSM.2017.2733042
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0015
https://doi.org/10.1145/2371536.2371572
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0017
https://doi.org/10.1109/TSE.1987.232894
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0019
http://www.etsi.org/deliver/etsi_tr/103100_103199/103125/01.01.01_60/tr_103125v010101p.pdf
https://doi.org/10.1109/ISSRE.2015.7381796
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0022
https://doi.org/10.1109/CNSM.2010.5691343
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0024
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0024
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0024
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0024
https://doi.org/10.1109/NAS.2012.30
https://doi.org/10.1109/SRDS.2013.29
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0028
https://doi.org/10.1145/1809049.1809070
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0031
https://doi.org/10.1145/2365864.2151028
https://doi.org/10.1145/1015467.1015492
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0034
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0034
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0034
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0034
https://doi.org/10.1109/SECPRI.1999.766909
https://doi.org/10.1109/SECPRI.2001.924294
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0037
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0037
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0037
https://doi.org/10.1109/DSN.2006.18
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0040
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0040
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0040
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0040
https://doi.org/10.1109/CCGRID.2010.98
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0043
https://doi.org/10.1109/INM.2015.7140349
https://doi.org/10.1109/65.283931
https://doi.org/10.1109/ICDCS.2013.26
https://doi.org/10.1109/APNOMS.2015.7275446
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0048
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0048
https://doi.org/10.1109/SRDS.2007.35
https://doi.org/10.1109/ISSRE.2016.32
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0051
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0051
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0051
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0051
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0051
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0051
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0052
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0052
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0052
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0052
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0052
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0052
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0054
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0054
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0054
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0054
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0054
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0054

106 C. Sauvanaud et al. / The Journal of Systems and Software 139 (2018) 84–106

W

W

W

X

Z

Silvestre, G. , Buffoni, D. , Pires, K. , Monnet, S. , Sens, P. , 2015a. Boosting stream-
ing video delivery with wisereplica. In: Transactions on Large-Scale Data-and

Knowledge-Centered Systems XX. Springer, pp. 34–58 .
Silvestre, G., Sauvanaud, C., Kaâniche, M., Kanoun, K., 2015b. Tejo: a supervised

anomaly detection scheme for NewSQL databases. 7th International Work-
shop on Software Engineering for Resilient Systems (SERENE 2015) doi: 10.1007/

978- 3- 319- 23129- 7 _ 9 . Paris, France
Simache, C. , Kaâniche, M. , 2001. Measurement-based availability analysis of unix

systems in a distributed environment. In: Software Reliability Engineering, 2001.

ISSRE 2001. Proceedings. 12th International Symposium on. IEEE, pp. 346–355 .
Simache, C. , Kaâniche, M. , Saidane, A. , 2002. Event log based dependability analysis

of windows nt and 2k systems.. In: Dependable Computing, 2002. Proceedings.
2002 Pacific Rim International Symposium on. Citeseer .

Tan, Y., Gu, X., Wang, H., 2010. Adaptive system anomaly prediction for large-scale
hosting infrastructures. In: Proceedings of the 29th ACM SIGACT-SIGOPS Sympo-

sium on Principles of Distributed Computing. ACM, New York, NY, USA, pp. 173–

182. doi: 10.1145/1835698.1835741 .
Tan, Y., Nguyen, H., Shen, Z., Gu, X., Venkatramani, C., Rajan, D., 2012. Prepare: pre-

dictive performance anomaly prevention for virtualized cloud systems. In: Dis-
tributed Computing Systems (ICDCS), 2012 IEEE 32nd International Conference

on, pp. 285–294. doi: 10.1109/ICDCS.2012.65 .
Van Hulse, J. , Khoshgoftaar, T.M. , Napolitano, A. , 2007. Experimental perspectives on

learning from imbalanced data. In: Proceedings of the 24tInternational Confer-

ence on Machine Learning. ACM, pp. 935–942 .
ang, C., Talwar, V., Schwan, K., Ranganathan, P., 2010. Online detection of util-
ity cloud anomalies using metric distributions. In: 2010 IEEE Network Oper-

ations and Management Symposium - NOMS 2010, pp. 96–103. doi: 10.1109/
NOMS.2010.5488443 .

atanabe, Y., Otsuka, H., Sonoda, M., Kikuchi, S., Matsumoto, Y., 2012. Online fail-
ure prediction in cloud datacenters by real-time message pattern learning. In:

Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th Interna-
tional Conference on, pp. 504–511. doi: 10.1109/CloudCom.2012.6427566 .

illiams, A.W., Pertet, S.M., Narasimhan, P., 2007. Tiresias: black-box failure predic-

tion in distributed systems. In: 2007 IEEE International Parallel and Distributed
Processing Symposium, pp. 1–8. doi: 10.1109/IPDPS.2007.370345 .

u, W., Huang, L., Fox, A., Patterson, D., Jordan, M.I., 2009. Detecting large-scale sys-
tem problems by mining console logs. In: Proceedings of the ACM SIGOPS 22Nd

Symposium on Operating Systems Principles. ACM, New York, NY, USA, pp. 117–
132. doi: 10.1145/1629575.1629587 .

hang, J., Zulkernine, M., Haque, A., 2008. Random-forests-based network intrusion

detection systems. IEEE Trans. Syst. Man Cybern. Part C 38 (5), 649–659. doi: 10.
1109/TSMCC.2008.923876 .

Zhang, Y., Hong, B., Zhang, M., Deng, B., Lin, W., 2013. ecad: cloud anoma-
lies detection from an evolutionary view. In: Cloud Computing and Big Data

(CloudCom-Asia), 2013 International Conference on, pp. 328–334. doi: 10.1109/
CLOUDCOM-ASIA.2013.57 .

http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0053
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0053
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0053
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0053
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0053
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0053
https://doi.org/10.1007/978-3-319-23129-7_9
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0056
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0056
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0056
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0057
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0057
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0057
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0057
https://doi.org/10.1145/1835698.1835741
https://doi.org/10.1109/ICDCS.2012.65
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0060
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0060
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0060
http://refhub.elsevier.com/S0164-1212(18)30025-6/sbref0060
https://doi.org/10.1109/NOMS.2010.5488443
https://doi.org/10.1109/CloudCom.2012.6427566
https://doi.org/10.1109/IPDPS.2007.370345
https://doi.org/10.1145/1629575.1629587
https://doi.org/10.1109/TSMCC.2008.923876
https://doi.org/10.1109/CLOUDCOM-ASIA.2013.57

	Anomaly detection and diagnosis for cloud services: Practical experiments and lessons learned
	1 Introduction
	2 Anomaly detection system
	2.1 Monitoring
	2.2 Data processing per VM
	2.2.1 Definition of measures
	2.2.2 Data processing tasks
	2.2.3 Data processing models

	2.3 Fault injection
	2.3.1 Error emulation
	2.3.2 Injection campaign

	2.4 Validation of the ADS detection performance

	3 Implementation
	3.1 Monitoring module
	3.2 Detection module
	3.3 Fault injection module
	3.3.1 Injection agents
	3.3.2 Injection durations
	3.3.3 Pausing time

	3.4 Validation method

	4 Case studies
	4.1 MongoDB
	4.1.1 Workload for MongoDB
	4.1.2 MongoDB experimentations

	4.2 Clearwater
	4.2.1 Description
	4.2.2 Workload for Clearwater
	4.2.3 Clearwater experimentations

	5 MongoDB validation results
	5.1 Comparative analysis of supervised learning algorithms
	5.2 Diagnosis of the error type: datasets and
	5.3 Discussion

	6 Clearwater validation results
	6.1 Detection of errors
	6.1.1 Data distribution sensitivity: dataset
	6.1.2 Diagnosis of the anomalous VM: dataset
	6.1.3 Diagnosis of the error type: dataset
	6.1.4 Sensitivity to the injection intensity level: dataset
	6.1.5 Sensitivity to the injection duration: dataset
	6.1.6 Lifetime of detection models: datasets and

	6.2 Detection of SLA violations (SLAV)
	6.2.1 Diagnosis of the anomalous VM: dataset
	6.2.2 Comparison of hypervisor and OS based monitoring: dataset
	6.2.3 Diagnosis of the error type: dataset
	6.2.4 Sensitivity to the injection durations: dataset

	6.3 Discussion

	7 Related work
	8 Limitation
	9 Conclusions and future work
	Appendix A Overview of hypervisor monitoring counters
	Appendix B Overview of OS monitoring counters
	 References

