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Abstract

This document contains supplementary materials associated with the journal paper [1].

1 Introduction

The aim of the paper [1] was to introduce a sparse estimation method for the multipath (MP) biases
in Global Navigation Satellite Systems (GNSS) measurements (pseudoranges and pseudorange
rates). To do so, we supposed the receiver has N satellites in view, and thus has access to 2N
measurements (N pseudoranges and N pseudorange rates) which can be expressed as the linearized
problem

yk = Hkxk+mk + nk (1)

where

• yk ∈ R2N contains the difference between the actual and predicted pseudoranges and pseudo-
range rates at time k,

• Hk is the joint observation matrix for pseudoranges and pseudorange rates at time k des-
cribed in the next section,

• xk = sk − ŝk ∈ R8 is the difference between the state vector (receiver position, velocity,
clock bias, and clock drift) estimated at the previous position and the current state vector
at time k,

• mk ∈ R2N is a bias term due to the possible presence of MP at time k,

• nk ∼ N (0,Rk) ∈ R2N is a zero-mean Gaussian noise vector at time k with covariance matrix
Rk, described in the next section.
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2 Matrices used for the state and measurement equations
of the Kalman filter

This section provides the expressions of the matrices used in the state and measurement equations
of the Kalman filter considered for target tracking. We start with the Jacobian matrix Hk. Let
xk−1 be the position where the problem is linearized and xik the position of the i-th satellite at
time instant k. It is shown in the GNSS literature [2, 3] that if we use the notation

aik = − (xik − xk−1)

‖xik − xk−1‖2
(2)

=
[
ai1, ai2, ai3

]T
(3)

the Jacobian matrix Hk for the linearized problem (1) is

Hk =



a1
1 0 a1

2 0 a1
3 0 1 0

a2
1 0 a2

2 0 a2
3 0 1 0

...
...

...
...

...
...

...
...

aN1 0 aN2 0 aN3 0 1 0
0 a1

1 0 a1
2 0 a1

3 0 1
0 a2

1 0 a2
2 0 a2

3 0 1
...

...
...

...
...

...
...

...
0 aN1 0 aN2 0 aN3 0 1


. (4)

Regarding the process covariance matrix, if we consider the closed form expression given in [4,
5], which requires the parameters

• σ2
a, the variance of the user acceleration (σa = 2 m.s−2),

• σ2
b , the variance of the user clock bias (σ2

b = 0.5× 2× 10−19 s2),

• σ2
d, the variance of the user clock drift (σ2

d = 2π2 × 2× 10−20),

• ∆t, the time gap between where the linearization is made

and the notations

• Qx,k =

[
σ2
a

∆t3

3 σ2
a

∆t2

2

σ2
a

∆t2

2 σ2
a∆t

]
,

• Qb,k =

c2 (σ2
b∆t+ σ2

d
∆t3

3

)
c2
(
σ2
d

∆t2

2

)
c2
(
σ2
d

∆t2

2

)
c2
(
σ2
d∆t

)
;


we have

Qk =


Qx,k 02×2 02×2 02×2

02×2 Qx,k 02×2 02×2

02×2 02×2 Qx,k 02×2

02×2 02×2 02×2 Qb,k

 . (5)

Finally, the measurement noise covariance matrix Rk was defined as

Rk =

[
σ2

UEREIN 0
0 σ̇2

UEREIN

]
(6)

with σUERE = 5 m and σ̇UERE = λL1
× (2 Hz) ≈ 0.38 m.s−1, with λL1

the wavelength of the GPS
signals (UERE stands for User Equivalent Range Error).
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3 An algorithm for solving the LASSO problem

The LASSO problem

arg min
θ∈Rq

1

2
‖ỹ − H̃θ‖22 + λ‖θ‖1 (7)

can be solved using several algorithms [6, 7, 8]. For this method, we used the so-called shooting
algorithm. First, assume that θ = θ is of dimension q = 1. Hence H̃ = h̃ ∈ R2N×1 and (7)
becomes

arg min
θ∈R

1

2

N∑
i=1

(ỹi − h̃iθ)2 + λ|θ| (8)

If we assume θ ≥ 0, the absolute value in (8) disappears, and the resulting expression can be
differentiated with respect to θ leading to

N∑
i=1

−h̃i(ỹi − h̃iθ) + λ = 0 (9)

or equivalently

θ =

∑N
i=1 h̃iỹi − λ∑N

i=1 h̃
2
i

(10)

with the condition θ ≥ 0, i.e.,
∑N
i=1 h̃iỹi > λ. The same operation can be conducted with the

hypothesis θ ≤ 0 to find the general expression of θ

θ =
1

h̃
T
h̃
Sλ(h̃

T
ỹ) (11)

where Sλ is the soft thresholding operation

Sλ(x) =

 x− λ if x > λ
x+ λ if x < −λ
0 else

(12)

Now we can consider the case where H̃ ∈ R2N×q. An efficient algorithmic is obtained by adjusting
the coordinates of θ iteratively coordinatewise. Assume we want to estimate the jth coordinate
of θ. The problem (7) can be rewritten

arg min
θ∈Rq

1

2

N∑
i=1

ỹi −∑
k 6=j

h̃ikθk − h̃ijθj

2

+ λ
∑
k 6=j

|θk|+ λ|θj |. (13)

Solving for θj and using (11) yields

θj =
1

h̃
T

j h̃j
Sλ(h̃

T

j (ỹ − H̃(−j)
θ(−j))) (14)

where

• h̃j is the jth column of H̃,

• H̃(−j)
is the matrix H̃ with jth column replaced by 0,

• θ(−j) is the vector θ whose jth element has been replaced by 0.

This step is conducted for each of the N elements of θ successively until convergence (ensured by
the convexity of the objective function θ 7→ 1

2‖ỹ − H̃θ‖
2
2 + λ‖θ‖1).
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