Smooth Bias Estimation for Multipath Mitigation Using Sparse Estimation - Supplementary materials

Julien LESOUPLE ${ }^{1}$, Jean-Yves TOURNERET ${ }^{1,2}$, Mohamed SAHMOUDI ${ }^{1,3}$, Franck BARBIERO ${ }^{4}$ and Frédéric FAURIE ${ }^{5}$
${ }^{1}$ TéSA, 7 Boulevard de la Gare, 31500 Toulouse, France
${ }^{2}$ ENSEEIHT-IRIT, 2 Rue Camichel, 31071 Toulouse, France
${ }^{3}$ ISAE Supaero, 10 Avenue Edouard Belin, 31400, Toulouse, France
${ }^{4}$ CNES, 18 Avenue Edouard Belin, 31400, Toulouse, France
${ }^{5}$ M3 Systems, 26 Rue du Soleil Levant, 31410, Lavernose, France

April 26, 2018

Abstract

This document contains supplementary materials associated with the conference paper [1].

1 Introduction

The aim of the paper [1] was to introduce a smooth sparse estimation method of the multipath (MP) biases in Global Navigation Satellite Systems (GNSS) measurements (pseudoranges and Doppler). To do so, we supposed the receiver ate time instant k has s_{k} satellites in view, and thus has access to $2 s_{k}$ measurements (s_{k} pseudoranges and s_{k} pseudorange rates) which can be expressed as

$$
\begin{equation*}
\boldsymbol{y}_{k}=\boldsymbol{H}_{k} \boldsymbol{x}_{k}+\boldsymbol{m}_{k}+\boldsymbol{n}_{k} \tag{1}
\end{equation*}
$$

where $\boldsymbol{y}_{k}=\left(y_{i, k}\right)_{i=1, \ldots, 2 s_{k}} \in \mathbb{R}^{2 s_{k}}$ is a vector containing the differences between the measurements and their estimates, $\boldsymbol{H}_{k} \in \mathbb{R}^{2 s_{k} \times 8}$ is the Jacobian matrix of the problem, and \boldsymbol{n}_{k} is an additive white Gaussian noise with covariance matrix \boldsymbol{R}_{k}. In the paper, it was proposed to solve the two problems

$$
\begin{equation*}
\underset{\boldsymbol{\theta}_{k} \in \mathbb{R}^{s_{k}}}{\arg \min } \frac{1}{2}\left\|\tilde{\boldsymbol{y}}_{k}-\tilde{\boldsymbol{H}}_{k} \boldsymbol{\theta}_{k}\right\|_{2}^{2}+\lambda_{k}\left\|\boldsymbol{\theta}_{k}\right\|_{1}+\mu_{k}\left\|\boldsymbol{\theta}_{k}-\hat{\boldsymbol{\theta}}_{k-1}\right\|_{1} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\underset{\boldsymbol{\theta}_{k} \in \mathbb{R}^{s_{k}}}{\arg \min } \frac{1}{2}\left\|\tilde{\boldsymbol{y}}_{k}-\tilde{\boldsymbol{H}}_{k} \boldsymbol{\theta}_{k}\right\|_{2}^{2}+\lambda_{k}\left\|\boldsymbol{\theta}_{k}\right\|_{1}+\mu_{k}\left\|\boldsymbol{\theta}_{k}-\hat{\boldsymbol{\theta}}_{k-1}\right\|_{2} \tag{3}
\end{equation*}
$$

where

- $\boldsymbol{P}_{k}=\boldsymbol{H}_{k}\left(\boldsymbol{H}_{k}^{T} \boldsymbol{H}_{k}\right)^{-1} \boldsymbol{H}_{k}^{T} \in \mathbb{R}^{2 s_{k} \times 2 s_{k}}$ is projection matrix on the subspace spanned by \boldsymbol{H}_{k}
- $\tilde{\boldsymbol{y}}_{k}=\left(I_{2 s_{k}}-\boldsymbol{P}_{k}\right) \boldsymbol{y}_{k} \in \mathbb{R}^{2 s_{k}}$ are the projected measurements on the orthogonal space of \boldsymbol{H}_{k}
- $\tilde{\boldsymbol{H}}_{k}=\left(I_{2 s_{k}}-\boldsymbol{P}_{k}\right) \boldsymbol{W}_{k}^{-1} \in \mathbb{R}^{2 s_{k} \times 2 s_{k}}$ is the weighted projection matrix on the orthogonal space of \boldsymbol{H}_{k}
- $\boldsymbol{\theta}_{k}=\boldsymbol{W}_{k} \boldsymbol{m}_{k} \in \mathbb{R}^{2 s_{k}}$ are the weighted multipath biases
- $\hat{\boldsymbol{\theta}}_{k} \in \mathbb{R}^{2 s_{k}}$ are the weighted multipath biases estimated at time instant $k-1$
- $\boldsymbol{W}_{k} \in \mathbb{R}^{2 s_{k} \times 2 s_{k}}$ is the weighting matrix
- \mathcal{S}_{k} contains the set of satellites jointly visible at time instants k and $k-1$
- $\left\|\boldsymbol{\theta}_{k}-\hat{\boldsymbol{\theta}}_{k-1}\right\|_{1, \mathcal{S}_{k}}=\sum_{i \in \mathcal{S}_{k}}\left|\theta_{i, k}-\hat{\theta}_{i, k-1}\right|$ is the ℓ_{1}-norm of $\boldsymbol{\theta}_{k}-\hat{\boldsymbol{\theta}}_{k-1}$ restricted to the satellites presents at time instant $k-1$ and k
- λ_{k} and μ_{k} are two regularization parameters.

Next section will present how to solve problems (2) and (3).

2 Solution of the ℓ_{2}-smoothing regularization

For problem (3), one can define

$$
\begin{equation*}
\boldsymbol{\Delta}_{k}=\operatorname{diag}\left(i \in \mathcal{S}_{k}\right) \tag{4}
\end{equation*}
$$

that is the diagonal matrix whose i-th entry is 1 if the corresponding satellite was visible at the previous time instant, and 0 if it was not, then the problem (3) can be rewritten

$$
\begin{equation*}
\underset{\boldsymbol{\theta}_{k} \in \mathbb{R}^{s_{k}}}{\arg \min } \frac{1}{2}\left\|\tilde{\boldsymbol{y}}_{k}-\tilde{\boldsymbol{H}}_{k} \boldsymbol{\theta}_{k}\right\|_{2}^{2}+\lambda_{k}\left\|\boldsymbol{\theta}_{k}\right\|_{1}+\mu_{k}\left\|\boldsymbol{\Delta}_{k}\left(\boldsymbol{\theta}_{k}-\hat{\boldsymbol{\theta}}_{k-1}\right)\right\|_{2} . \tag{5}
\end{equation*}
$$

Let's develop this equation, noticing that $\boldsymbol{\Delta}_{k}^{T}=\boldsymbol{\Delta}_{k}$ and $\boldsymbol{\Delta}_{k}^{2}=\boldsymbol{\Delta}_{k}$,

$$
\begin{align*}
& \underset{\boldsymbol{\theta}_{k} \in \mathbb{R}^{s_{k}}}{\arg \min } \frac{1}{2}\left\|\tilde{\boldsymbol{y}}_{k}-\tilde{\boldsymbol{H}}_{k} \boldsymbol{\theta}_{k}\right\|_{2}^{2}+\lambda_{k}\left\|\boldsymbol{\theta}_{k}\right\|_{1}+\mu_{k}\left\|\boldsymbol{\Delta}_{k}\left(\boldsymbol{\theta}_{k}-\hat{\boldsymbol{\theta}}_{k-1}\right)\right\|_{2}^{2} \\
& \Leftrightarrow \underset{\boldsymbol{\theta}_{k} \in \mathbb{R}^{s_{k}}}{\arg \min } \frac{1}{2}\left(\tilde{\boldsymbol{y}}_{k}-\tilde{\boldsymbol{H}}_{k} \boldsymbol{\theta}_{k}\right)^{T}\left(\tilde{\boldsymbol{y}}_{k}-\tilde{\boldsymbol{H}}_{k} \boldsymbol{\theta}_{k}\right)+\lambda_{k}\left\|\boldsymbol{\theta}_{k}\right\|_{1}+\frac{1}{2} 2 \mu_{k}\left(\boldsymbol{\Delta}_{k}\left(\boldsymbol{\theta}_{k}-\hat{\boldsymbol{\theta}}_{k-1}\right)\right)^{T}\left(\boldsymbol{\Delta}_{k}\left(\boldsymbol{\theta}_{k}-\hat{\boldsymbol{\theta}}_{k-1}\right)\right) \\
& \Leftrightarrow \underset{\boldsymbol{\theta}_{k} \in \mathbb{R}^{s_{k}}}{\arg \min } \frac{1}{2}\left(\boldsymbol{\theta}_{k}^{T} \tilde{\boldsymbol{H}}_{k}^{T} \tilde{\boldsymbol{H}}_{k} \boldsymbol{\theta}_{k}-2 \tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{H}}_{k} \boldsymbol{\theta}_{k}+2 \mu_{k} \boldsymbol{\theta}_{k}^{T} \boldsymbol{\Delta}_{k} \boldsymbol{\theta}_{k}-4 \mu_{k} \hat{\boldsymbol{\theta}}_{k-1}^{T} \boldsymbol{\Delta}_{k} \boldsymbol{\theta}_{k}\right)+\lambda_{k}\left\|\boldsymbol{\theta}_{k}\right\|_{1} \\
& \Leftrightarrow \underset{\boldsymbol{\theta}_{k} \in \mathbb{R}^{s_{k}}}{\arg \min } \frac{1}{2}\left(\boldsymbol{\theta}_{k}^{T}\left(\tilde{\boldsymbol{H}}_{k}^{T} \tilde{\boldsymbol{H}}_{k}+2 \mu_{k} \boldsymbol{\Delta}_{k}\right) \boldsymbol{\theta}_{k}-2\left(\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{H}}_{k}+2 \mu_{k} \hat{\boldsymbol{\theta}}_{k-1}^{T} \boldsymbol{\Delta}_{k}\right) \boldsymbol{\theta}_{k}\right)+\lambda_{k}\left\|\boldsymbol{\theta}_{k}\right\|_{1} \tag{6}
\end{align*}
$$

define \boldsymbol{A}_{k} such that $\boldsymbol{A}_{k}^{T} \boldsymbol{A}_{k}=\tilde{\boldsymbol{H}}_{k}^{T} \tilde{\boldsymbol{H}}_{k}+2 \mu_{k} \boldsymbol{\Delta}_{k}$ (which exists as $\tilde{\boldsymbol{H}}_{k}^{T} \tilde{\boldsymbol{H}}_{k}+2 \mu_{k} \boldsymbol{\Delta}_{k}$ has positive or null singular values given its expression), and assume the matrix \boldsymbol{A}_{k} is invertible ${ }^{1}$, then

$$
\begin{align*}
& \underset{\boldsymbol{\theta}_{k} \in \mathbb{R}^{s_{k}}}{\arg \min } \frac{1}{2}\left(\boldsymbol{\theta}_{k}^{T}\left(\tilde{\boldsymbol{H}}_{k}^{T} \tilde{\boldsymbol{H}}_{k}+2 \mu_{k} \boldsymbol{\Delta}_{k}\right) \boldsymbol{\theta}_{k}-2\left(\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{H}}_{k}+2 \mu_{k} \hat{\boldsymbol{\theta}}_{k-1}^{T} \boldsymbol{\Delta}_{k}\right) \boldsymbol{\theta}_{k}\right)+\lambda_{k}\left\|\boldsymbol{\theta}_{k}\right\|_{1} \\
& \Leftrightarrow \underset{\boldsymbol{\theta}_{k} \in \mathbb{R}^{s_{k}}}{\arg \min } \frac{1}{2}\left(\boldsymbol{\theta}_{k}^{T} \boldsymbol{A}_{k}^{T} \boldsymbol{A}_{k} \boldsymbol{\theta}_{k}-2\left(\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{H}}_{k}+2 \mu_{k} \hat{\boldsymbol{\theta}}_{k-1}^{T} \boldsymbol{\Delta}_{k}\right) \boldsymbol{A}_{k}^{-1} \boldsymbol{A}_{k} \boldsymbol{\theta}_{k}\right)+\lambda_{k}\left\|\boldsymbol{\theta}_{k}\right\|_{1} \\
& \Leftrightarrow \underset{\boldsymbol{\theta}_{k} \in \mathbb{R}^{s_{k}}}{\arg \min } \frac{1}{2}\left\|\left(\left(\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{H}}_{k}+2 \mu_{k} \hat{\boldsymbol{\theta}}_{k-1}^{T} \boldsymbol{\Delta}_{k}\right) \boldsymbol{A}_{k}^{-1}\right)^{T}-\boldsymbol{A}_{k} \boldsymbol{\theta}_{k}\right\|_{2}^{2}+\lambda_{k}\left\|\boldsymbol{\theta}_{k}\right\|_{1} \\
& \Leftrightarrow \underset{\boldsymbol{\theta}_{k} \in \mathbb{R}^{s_{k}}}{\arg \min } \frac{1}{2}\left\|\left(\boldsymbol{A}_{k}^{T}\right)^{-1}\left(\tilde{\boldsymbol{H}}_{k}^{T} \tilde{\boldsymbol{y}}_{k}+2 \mu_{k} \boldsymbol{\Delta}_{k} \hat{\boldsymbol{\theta}}_{k-1}\right)-\boldsymbol{A}_{k} \boldsymbol{\theta}_{k}\right\|_{2}^{2}+\lambda_{k}\left\|\boldsymbol{\theta}_{k}\right\|_{1} \tag{7}
\end{align*}
$$

where one can recognize a LASSO problem with measurements $\left(\boldsymbol{A}_{k}^{T}\right)^{-1}\left(\tilde{\boldsymbol{H}}_{k}^{T} \tilde{\boldsymbol{y}}_{k}+2 \mu_{k} \boldsymbol{\Delta}_{k} \hat{\boldsymbol{\theta}}_{k-1}\right)$, matrix \boldsymbol{A}_{k} and unknown $\boldsymbol{\theta}_{k}$, and can use one of the method provided in 1 to solve it.

[^0]
3 Solution of the ℓ_{2}-smoothing regularization

The problem to be solved is (2), namely

$$
\underset{\boldsymbol{\theta}_{k} \in \mathbb{R}^{s_{k}}}{\arg \min } \frac{1}{2}\left\|\tilde{\boldsymbol{y}}_{k}-\tilde{\boldsymbol{H}}_{k} \boldsymbol{\theta}_{k}\right\|_{2}^{2}+\lambda_{k}\left\|\boldsymbol{\theta}_{k}\right\|_{1}+\mu_{k}\left\|\boldsymbol{\theta}_{k}-\hat{\boldsymbol{\theta}}_{k-1}\right\|_{1} .
$$

First let's solve this problem when $\boldsymbol{\theta}$ is of dimension 1 . The problem becomes, where $\mu_{k}=0$ if the corresponding satellite weren't visible at time instant $k-1$ and $\mu_{k}>0$ if it were,

$$
\begin{equation*}
\underset{\theta_{k} \in \mathbb{R}}{\arg \min } \frac{1}{2}\left\|\tilde{\boldsymbol{y}}_{k}-\tilde{\boldsymbol{h}}_{k} \theta_{k}\right\|_{2}^{2}+\lambda_{k}\left|\theta_{k}\right|+\mu_{k}\left|\theta_{k}-\hat{\theta}_{k-1}\right| \tag{8}
\end{equation*}
$$

whose generalized gradient is

$$
\begin{equation*}
\nabla\left(\frac{1}{2}\left(\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k} \theta_{k}^{2}-2 \tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k} \theta_{k}\right)\right)+\partial\left(\lambda_{k}\left|\theta_{k}\right|\right)+\partial\left(\mu_{k}\left|\theta_{k}-\hat{\theta}_{k-1}\right|\right)=\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k} \theta_{k}-\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}+\lambda_{k} \partial\left(\left|\theta_{k}\right|\right)+\mu_{k} \partial\left(\left|\theta_{k}-\hat{\theta}_{k}\right|\right) \tag{9}
\end{equation*}
$$

where

$$
\partial(|x|)=\left\{\begin{array}{ll}
\operatorname{sign}(x) & \text { if } x \neq 0 \tag{10}\\
{[-1,1]} & \text { if } x=0
\end{array} .\right.
$$

Hence there are $3^{2}=9$ according to what is inside each absolute value $(<0,>0$ or $=0)$.

- If $\theta_{k}>0$ and $\theta_{k}-\hat{\theta}_{k-1}>0$

We have

$$
\begin{equation*}
\nabla=\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k} \theta_{k}-\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}+\lambda_{k}+\mu_{k} \tag{11}
\end{equation*}
$$

which equals 0 when

$$
\begin{equation*}
\theta_{k}^{*}=\frac{\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}-\lambda_{k}-\mu_{k}}{\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}} \tag{12}
\end{equation*}
$$

and the assumptions $\left(\theta_{k}>0\right.$ and $\left.\theta_{k}-\hat{\theta}_{k-1}>0\right)$ give

$$
\begin{align*}
& \tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}>\lambda_{k}+\mu_{k} \tag{13}\\
& \tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}>\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k} \hat{\theta}_{k-1}+\lambda_{k}+\mu_{k} . \tag{14}
\end{align*}
$$

- If $\theta_{k}>0$ and $\theta_{k}-\hat{\theta}_{k-1}<0$

We have

$$
\begin{equation*}
\nabla=\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k} \theta_{k}-\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}+\lambda_{k}-\mu_{k} \tag{15}
\end{equation*}
$$

which equals 0 when

$$
\begin{equation*}
\theta_{k}^{*}=\frac{\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}-\lambda_{k}+\mu_{k}}{\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}} \tag{16}
\end{equation*}
$$

and the assumptions $\left(\theta_{k}>0\right.$ and $\left.\theta_{k}-\hat{\theta}_{k-1}<0\right)$ give

$$
\begin{align*}
& \tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}>\lambda_{k}-\mu_{k} \tag{17}\\
& \tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}<\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k} \hat{\theta}_{k-1}+\lambda_{k}-\mu_{k} \tag{18}
\end{align*}
$$

- If $\theta_{k}<0$ and $\theta_{k}-\hat{\theta}_{k-1}>0$

We have

$$
\begin{equation*}
\nabla=\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k} \theta_{k}-\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}-\lambda_{k}+\mu_{k} \tag{19}
\end{equation*}
$$

which equals 0 when

$$
\begin{equation*}
\theta_{k}^{*}=\frac{\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}+\lambda_{k}-\mu_{k}}{\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}} \tag{20}
\end{equation*}
$$

and the assumptions $\left(\theta_{k}<0\right.$ and $\left.\theta_{k}-\hat{\theta}_{k-1}>0\right)$ give

$$
\begin{align*}
& \tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}<-\lambda_{k}+\mu_{k} \tag{21}\\
& \tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}>\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k} \hat{\theta}_{k-1}-\lambda_{k}+\mu_{k} . \tag{22}
\end{align*}
$$

- If $\theta_{k}<0$ and $\theta_{k}-\hat{\theta}_{k-1}<0$

We have

$$
\begin{equation*}
\nabla=\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k} \theta_{k}-\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}-\lambda_{k}-\mu_{k} \tag{23}
\end{equation*}
$$

which equals 0 when

$$
\begin{equation*}
\theta_{k}^{*}=\frac{\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}+\lambda_{k}+\mu_{k}}{\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}} \tag{24}
\end{equation*}
$$

and the assumptions $\left(\theta_{k}<0\right.$ and $\left.\theta_{k}-\hat{\theta}_{k-1}<0\right)$ give

$$
\begin{align*}
& \tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}<-\lambda_{k}-\mu_{k} \tag{25}\\
& \tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}<\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k} \hat{\theta}_{k-1}-\lambda_{k}-\mu_{k} . \tag{26}
\end{align*}
$$

In cases where one of the absolute values is null, we can treat jointly the different signs of the other one

- If $\theta_{k}=0$ and $\theta_{k}-\hat{\theta}_{k-1} \neq 0$

We have

$$
\begin{equation*}
\nabla=-\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}+\lambda_{k}[-1,1]+\mu_{k} \operatorname{sign}\left(-\hat{\theta}_{k-1}\right) \tag{27}
\end{equation*}
$$

and we solve

$$
\begin{align*}
& 0 \in-\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}+\lambda_{k}[-1,1]+\mu_{k} \operatorname{sign}\left(-\hat{\theta}_{k-1}\right) \\
\Leftrightarrow & \tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}+\mu_{k} \operatorname{sign}\left(\hat{\theta}_{k-1}\right) \in\left[-\lambda_{k}, \lambda_{k}\right] \\
\Leftrightarrow & \left|\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}+\mu_{k} \operatorname{sign}\left(\hat{\theta}_{k-1}\right)\right| \leq \lambda_{k} . \tag{28}
\end{align*}
$$

- If $\theta_{k} \neq 0$ and $\theta_{k}-\hat{\theta}_{k-1}=0$

We have $\theta_{k}=\hat{\theta}_{k-1}$ and

$$
\begin{equation*}
\nabla=\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k} \theta_{k}-\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}+\lambda_{k} \operatorname{sign}\left(\hat{\theta}_{k-1}\right)+\mu_{k}[-1,1] \tag{29}
\end{equation*}
$$

and we solve

$$
\begin{align*}
& 0 \in \tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k} \theta_{k}-\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}+\lambda_{k} \operatorname{sign}\left(\hat{\theta}_{k-1}\right)+\mu_{k}[-1,1] \\
\Leftrightarrow & -\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k} \theta_{k}+\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}-\lambda_{k} \operatorname{sign}\left(\hat{\theta}_{k-1}\right) \in\left[-\mu_{k}, \mu_{k}\right] \\
\Leftrightarrow & \left|-\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k} \theta_{k}+\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}-\lambda_{k} \operatorname{sign}\left(\hat{\theta}_{k-1}\right)\right| \leq \mu_{k} . \tag{30}
\end{align*}
$$

Conditions	Solution
$\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}>\lambda_{k}+\mu_{k}$ and $\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}>\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k} \hat{\theta}_{k-1}+\lambda_{k}+\mu_{k}$	$\theta_{k}^{*}=\frac{\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}-\lambda_{k}-\mu_{k}}{\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}}$
$\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}>\lambda_{k}-\mu_{k}$ and $\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}<\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k} \hat{\theta}_{k-1}+\lambda_{k}-\mu_{k}$	$\theta_{k}^{*}=\frac{\tilde{\boldsymbol{y}}_{k}^{T} \boldsymbol{h}_{k}-\lambda_{k}+\mu_{k}}{\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}}$
$\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}<-\lambda_{k}+\mu_{k}$ and $\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}>\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k} \hat{\theta}_{k-1}-\lambda_{k}+\mu_{k}$	$\theta_{k}^{*}=\frac{\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}+\lambda_{k}-\mu_{k}}{\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}}$
$\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}<-\lambda_{k}-\mu_{k}$ and $\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}<\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k} \hat{\theta}_{k-1}-\lambda_{k}-\mu_{k}$	$\theta_{k}^{*}=\frac{\tilde{\boldsymbol{y}}_{k}^{T} \boldsymbol{h}_{k}+\lambda_{k}+\mu_{k}}{\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}}$
$\left\|\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}+\mu_{k} \operatorname{sign}\left(\hat{\theta}_{k-1}\right)\right\| \leq \lambda_{k}$ and $\hat{\theta}_{k-1} \neq 0$	$\theta_{k}{ }^{*}=0$
$\left\|-\tilde{\boldsymbol{h}}_{k}^{T} \tilde{\boldsymbol{h}}_{k} \theta_{k}+\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}-\lambda_{k} \operatorname{sign}\left(\hat{\theta}_{k-1}\right)\right\| \leq \mu_{k}$ and $\hat{\theta}_{k-1} \neq 0$	$\theta_{k}^{*}=\hat{\theta}_{k-1}$
$\left\|\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}\right\| \leq \lambda_{k}+\mu_{k}$ and $\hat{\theta}_{k-1}=0$	$\theta_{k}{ }^{*}=0$

Table 1: Solution of the 1D problem.

- If $\theta_{k}=0$ and $\theta_{k}-\hat{\theta}_{k-1}=0$

We have $\theta_{k}=\hat{\theta}_{k-1}$ and

$$
\begin{equation*}
\nabla=-\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}+\lambda_{k}[-1,1]+\mu_{k}[-1,1] \tag{31}
\end{equation*}
$$

and we solve

$$
\begin{align*}
& 0 \in-\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}+\lambda_{k}[-1,1]+\mu_{k}[-1,1] \\
\Leftrightarrow & \tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k} \in\left[-\left(\lambda_{k}+\mu_{k}\right), \lambda_{k}+m u_{k}\right] \\
\Leftrightarrow & \left|\tilde{\boldsymbol{y}}_{k}^{T} \tilde{\boldsymbol{h}}_{k}\right| \leq \lambda_{k}+\mu_{k} . \tag{32}
\end{align*}
$$

All these results are gathered in Table 1.
For the multidimensional case, one can apply the same strategy as done for the shooting algorithm in [2] and update each coordinate one at a time until convergence.

References

[1] J. Lesouple, F. Barbiero, F. Faurie, M. Sahmoudi, and J.-Y. Tourneret, "Smooth Bias Estimation for Multipath Mitigation Using Sparse Estimation," in Proc. IEEE Int. Conf. on Inf. Fusion (FUSION), Cambridge, UK, July 2018, pp. xx-xx.
[2] G. V. Pendse, "A tutorial on the LASSO and the shooting algorithm," Harvard Medical School, vol. 13, Feb. 2011.

[^0]: ${ }^{1}$ This has always been the case in our experiments, but if not one has to treat separately satellites that where visible at time instant $k-1$ (as the matrix $\boldsymbol{A}_{\boldsymbol{k}}$ will be invertible for them as it consists in diagonal loading) and those who were note

