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Abstract

This document contains supplementary materials associated with the conference paper [1].

1 Introduction

The aim of the paper [1] was to introduce a Bayesian estimation method for the multipath (MP)
biases and the associated hyperparameters in Global Navigation Satellite Systems (GNSS) mea-
surements (pseudoranges and Doppler). To do so, we supposed the receiver has sk satellites in
view, and thus has access to 2sk measurements (sk pseudoranges and sk pseudorange rates) which
can be expressed as

yk = H̄kxk +mk + nk (1)

where yk = (yi,k)i=1,...,2sk ∈ R2sk is a vector containing the differences between the measurements
and their estimates, H̄k ∈ R2sk×8 is a block diagonal matrix with two blocks equal to the Jacobian
matrix of the problem denoted as Hk, and nk is an additive white Gaussian noise with covariance
matrix Rk. In order to account for different noise variances for the pseudoranges and pseudorange
rates, we assume in [1] that Rk = diag(σ2

i,k) ∈ R2sk×2sk is a diagonal matrix, with

σ2
i,k =

{
c1,kµi,k, i = 1, . . . , sk,
c2,kµi,k, i = sk + 1, . . . , 2sk

where

µi,k = 10−
(C/N0)i,k

10

is related to the signal to noise ratio in the ith channel at time instant k (provided by standard
receivers). Note that this formulation was proposed in [2] with c1,k = 1.1× 104 m2. In this paper,
we will use c2,k = 1.1× 102 m2.s−2, in order to have a pseudorange variance 100 times larger than
the pseudorange rate variance.
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2 Hierarchical model

We recall here the model investigated in [1]. Using the notation h̄i,k for the ith line of matrix H̄k

for i = 1, . . . , 2sk, this model is defined as follows

yi,k|xk,mi,k, σ
2
i,k ∼ N (h̄i,kx1,k +mi,k, σ

2
i,k), i = 1, ..., sk (2)

∼ N (h̄i,kx2,k +mi,k, σ
2
i,k), i = sk + 1, ..., 2sk (3)

mi,k|zi,k, τ2
i,k ∼

{
δ(mi,k) if zi,k = 0
N (mi,k|0, c1,kτ2

i,k) if zi,k = 1
, i = 1, ..., sk (4)

∼
{
δ(mi,k) if zi,k = 0
N (mi,k|0, c2,kτ2

i,k) if zi,k = 1
, i = sk + 1, ..., 2sk (5)

τ2
i,k|a1,k, a2,k ∼ E

(
τ2
i,k

∣∣∣∣∣ 2

w2
i,ka

2
1,k

)
, i = 1, ..., sk (6)

∼ E

(
τ2
i,k

∣∣∣∣∣ 2

w2
i,ka

2
2,k

)
, i = sk + 1, ..., 2sk (7)

zi,k|p1,k, p2,k ∼ B(zi,k|p1,k), i = 1, ..., sk (8)

∼ B(zi,k|p2,k), i = sk + 1, ..., 2sk (9)

f(a2
j,k) ∝ 1/a2

j,k, j = 1, 2 (10)

pj,k ∼ U[0,1](pj,k), j = 1, 2 (11)

xk = (xT1,k,x
T
2,k)T ∼ N (08,F kP k|kF

T
k +Qk). (12)

The conditional distributions of each parameter can be computed as detailed in the next section.
Note that these distributions are also conditioned upon y1:k−1. However, for brevity, we have
not indicated this condition, which only appears in the matrix P k|k and in the linearization point

{r̃Tk , ṽTk }T .

3 Conditional distributions

3.1 Conditional distribution of τ 2i,k

We have, for i = 1, ..., sk for instance

f(τ2
i,k|mi,k, a1, zi,k) ∝ f(mi,k|zi,k, τ2

i,k)f(τ2
i,k|a1,k)

∝

 exp
(
−w

2
i,ka

2
jτ

2
i,k

2

)
if zi,k = 0

exp
(
−w

2
i,ka

2
1τ

2
i,k

2

)
(τ2
i,k)−1/2 exp

(
− m2

i,k

2c1,kτ2
i,k

)
if zi,k = 1

∝

 exp
(
−w

2
i,ka

2
1τ

2
i,k

2

)
si zi,k = 0

(τ2
i,k)−1/2 exp

(
− 1

2

(
w2
i,ka

2
1τ

2
i,k +

m2
i,k/c1,k
τ2
i,k

))
si zi,k = 1

(13)

hence

f(τ2
i,k|mi,k, a

2
1,k, zi,k) =

 E
(
τ2
i,k

∣∣∣ 2
w2
i,ka

2
1

)
if zi,k = 0

GIG
(
τ2
i,k

∣∣∣ 12 , w2
i,ka

2
1,
m2
i,k

c1,k

)
if zi,k = 1

, i = 1, ..., sk (14)

where GIG(.|p, a, b) is the Generalized Inverse Gaussian distribution with parameters p, a and b,
whose probability density function (pdf) is

f(x) ∝ xp−1 exp

(
−1

2

(
ax+

b

x

))
. (15)
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Note that we have the equivalence

τ2
i,k|mi,k, a1, zi,k ∼ GIG

(
τ2
i,k

∣∣∣∣∣12 , w2
i,ka

2
1,
m2
i,k

c1,k

)
⇔ 1

τ2
i,k

∣∣∣∣∣mi,k, a1, zi,k ∼ IN

(
1

τ2
i,k

∣∣∣∣∣
√
a2

1w
2
i,kc1,k

m2
i,k

, a2
1w

2
i,k

)
(16)

where IN (.|µ, λ) is the inverse Gaussian distribution with parameters µ et λ whose pdf is

f(x) ∝ x−3/2 exp

(
−λ(x− µ)2

2µ2x

)
. (17)

Similar computations lead to

f(τ2
i,k|mi,k, a

2
2,k, zi,k) =

 E
(
τ2
i,k

∣∣∣ 2
w2
i,ka

2
2

)
if zi,k = 0

GIG
(
τ2
i,k

∣∣∣ 12 , w2
i,ka

2
2,
m2
i,k

c2,k

)
if zi,k = 1

, i = sk + 1, ..., 2sk (18)

3.2 Conditional distribution of zi,k

We will rather consider the marginal distribution of zi,k, where mi,k has been marginalized, re-
sulting into a partially collapsed Gibbs sampler (PCGS) and leading to better convergence pro-
perties [3]. The conditional distribution of (mi,k, zi,k) for i = 1, ..., sk is given by

f(mi,k, zi,k|yi,k,x1,k, τ
2
i,k, p1,k) ∝f(yi,k|x1,k,mi,k)f(mi,k|zi,k, τ2

i,k)f(zi,k|p1,k) (19)

hence

f(mi,k, zi,k|yi,k,x1,k, τ
2
i,k, c1,k, p1,k) ∝

exp

(
− (yi,k − h̄i,kx1,k −mi,k)2

2c1,kµi,k

)δ(mi,k)(1− zi,k) +
exp

(
− m2

i,k

2c1,kτ2
i,k

)
√

2πc1,kτ2
i,k

zi,k

 [(1− p1,k)δ(zi,k) + p1,kδ(1− zi,k)] =

exp

(
− (yi,k − h̄i,kx1,k −mi,k)2

2c1,kµi,k

)(1− p1,k)δ(zi,k)δ(mi,k) + p1,kδ(1− zi,k)
exp

(
− m2

i,k

2c1,kτ2
i,k

)
√

2πc1,kτ2
i,k

 =

exp
(
− (yi,k−h̄i,kx1,k)2

2c1,kµi,k

)
(1− p1,k)δ(zi,k)δ(mi,k) + exp

(
− (yi,k−h̄i,kx1,k−mi,k)2

2c1,kµi,k

)
p1,kδ(1− zi,k)

exp

(
−

m2
i,k

2c1,kτ
2
i,k

)
√

2πc1,kτ2
i,k

.

(20)

The marginal distribution of zi,k can then be computed as

f(zi,k|yi,k,x1,k, τ
2
i,k, p1,k) =

∫
R
f(mi,k, zi,k|yi,k,x1,k, τ

2
i,k, c1,k, p1,k)dmi,k

∝ ui,kδ(zi,k) + vi,kδ(1− zi,k) (21)

with

ui,k =

∫
R

exp

(
− (yi,k − h̄i,kx1,k)2

2c1,kµi,k

)
(1− p1,k)δ(mi,k)dmi,k

= exp

(
− (yi,k − h̄i,kx1,k)2

2c1,kµi,k

)
(1− p1,k) (22)
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and

vi,k =p1,k

∫
R

exp

(
− (yi,k − h̄i,kx1,k −mi,k)2

2c1,kµi,k

)exp
(
− m2

i,k

2c1,kτ2
i,k

)
√

2πc1,kτ2
i,k

dmi,k

=
p1,k√

2πc1,kτ2
i,k

∫
R

exp

(
− 1

2c1,k

(
(yi,k − h̄i,kx1,k −mi,k)2

µi,k
+
m2
i,k

τ2
i,k

))
dmi,k

=
p1,k√

2πc1,kτ2
i,k

∫
R

exp

(
− 1

2c1,k

(
(yi,k − h̄i,kx1,k)2 − 2mi,k(yi,k − h̄i,kx1,k)

µi,k
+

(
1

µi,k
+

1

τ2
i,k

)
m2
i,k

))
dmi,k

=
p1,k√

2πc1,kτ2
i,k

×
∫
R

exp

− 1

2c1,k

(
1

µi,k
+ 1
τ2
i,k

)−1

((
1

µi,k
+ 1

τ2
i,k

)−1
(yi,k−h̄i,kx1,k)2−2mi,k(yi,k−h̄i,kx1,k)

µi,k
+m2

i,k

)dmi,k

(23)

Using the notations

σ2
mi,k

=

(
1

c1,kτ2
i,k

+
1

c1,kµi,k

)−1

=
c1,kµi,kτ

2
i,k

µi,k + τ2
i,k

(24)

µmi,k = σ2
mi,k

(yi,k − h̄i,kx1,k)

c1,kµi,k

=
τ2
i,k

µi,k + τ2
i,k

(yi,k − h̄i,kx1,k). (25)

leads to

vi,k =
p1,k√

2πc1,kτ2
i,k

∫
R

exp

(
− 1

2σ2
mi,k

(
σ2
mi,k

(yi,k − h̄i,kx1,k)2 − 2mi,k(yi,k − h̄i,kx1,k)

c1,kµi,k
+m2

i,k

))
dmi,k

=
p1,k√

2πc1,kτ2
i,k

∫
R

exp

(
− 1

2σ2
mi,k

(
µ2
mi,k

c1,kµi,k
σ2
mi,k

− 2mi,kµmi,k +m2
i,k

))
dmi,k

=
p1,k√

2πc1,kτ2
i,k

exp

(
−
µ2
mi,k

c1,kµi,k

2(σ2
mi,k

)2

)∫
R

exp

(
− 1

2σ2
mi,k

(
−2mi,kµmi,k +m2

i,k

))
dmi,k

=
p1,k√

2πc1,kτ2
i,k

exp

(
−
µ2
mi,k

c1,kµi,k

2(σ2
mi,k

)2

)
exp

(
µ2
mi,k

2σ2
mi,k

)∫
R

exp

−
(
µ2
mi,k
− 2mi,kµmi,k +m2

i,k

)
2σ2

mi,k

dmi,k

=
p1,k√

2πc1,kτ2
i,k

exp

(
−
µ2
mi,k

c1,kµi,k

2(σ2
mi,k

)2

)
exp

(
µ2
mi,k

2σ2
mi,k

)√
2πσ2

mi,k
. (26)

Moreover, using the equality

exp

(
−
µ2
mi,k

c1,kµi,k

2(σ2
mi,k

)2

)
= exp

(
− (yi,k − h̄i,kx1,k)2

2µi,kc1,k

)
(27)
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we obtain

vi,k = p1,k

√
σ2
mi,k

c1,kτ2
i,k

exp

(
− (yi,k − h̄i,kx1,k)2

2µi,kc1,k

)
exp

(
µ2
mi,k

2σ2
mi,k

)
(28)

and the following Bernoulli distribution

f(zi,k|yi,k,x1,k, τ
2
i,k, p1,k) = B

(
zi,k

∣∣∣∣ vi,k
ui,k + vi,k

)
, i = 1, ..., sk. (29)

Note that ui,k and vi,k can be simplified to (as we only care about their ratio)

ui,k = (1− p1,k) (30)

vi,k = p1,k

√
σ2
mi,k

c1,kτ2
i,k

exp

(
µ2
mi,k

2σ2
mi,k

)
. (31)

Similar computations lead to

f(zi,k|yi,k,x2,k, τ
2
i,k, p2,k) = B

(
zi,k

∣∣∣∣ vi,k
ui,k + vi,k

)
, i = sk + 1, ..., 2sk (32)

extending the definitions of ui,k and vi,k for i = sk + 1, ..., 2sk by

ui,k = (1− p2,k) (33)

vi,k = p2,k

√
σ2
mi,k

c2,kτ2
i,k

exp

(
µ2
mi,k

2σ2
mi,k

)
. (34)

3.2.1 Conditional distribution of mi,k

Going back to (20), we can also find the marginal distribution of mi,k, for i = 1, ..., sk, using the
same computations and notations as before, yielding

f(mi,k|yi,k,x1,k, τ
2
i,k, zi,k) ∝ f(yi,k|x1,k,mi,k)f(mi,k|zi,k, τ2

i,k) (35)

i.e.,

f(mi,k|yi,k,x1,k, τ
2
i,k, zi,k) =

{
δ(mi,k) if zi,k = 0
N (µmi,k , σ

2
mi,k

) if zi,k = 1
, i = 1, ..., sk. (36)

Similar computations lead to

f(mi,k|yi,k,x2,k, τ
2
i,k, zi,k) =

{
δ(mi,k) if zi,k = 0
N (µmi,k , σ

2
mi,k

) if zi,k = 1
, i = sk + 1, ..., 2sk (37)

extending the definitions of µmi,k and σ2
mi,k

for i = sk + 1, ..., 2sk with

µmi,k =
τ2
i,k

µi,k + τ2
i,k

(yi,k − h̄i,kx2,k) (38)

σ2
mi,k

=
c2,kµi,kτ

2
i,k

µi,k + τ2
i,k

. (39)
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3.2.2 Conditional distribution of xk

We have

f(xk|yk,mk) ∝f(yk|xk,mk)f(xk)

∝ exp

(
−1

2
(yk − H̄kxk −mk)TR−1

k (yk − H̄kxk −mk)

)
exp

(
−1

2
xTk (F kP k|kF

T
k +Qk)−1xk

)
∝ exp

(
−1

2

[
xTk H̄

T
kR
−1
k (yk −mk) + xTk (H̄

T
kR
−1
k H̄k + (F kP k|kF

T
k +Qk)−1)xk

])
.

(40)

which is the following Gaussian distribution

f(xk|yk,mk) ∼ N (µxk ,Σxk) (41)

with

Σxk =
[
H̄

T
kR
−1
k H̄k + (F kP k|kF

T
k +Qk)−1

]−1

(42)

µxk = ΣxkH̄
T
kR
−1
k (yk −mk). (43)

3.2.3 Conditional distribution of a2
j,k

We have

f(a2
1,k|τ 2

k) ∝ f(τ 2
k|a2

1,k)f(a2
1,k)

∝

(
sk∏
i=1

f(τ2
i,k|a2

1,k)

)
f(a2

1,k)

∝
sk∏
i=1

a2
1,k exp

(
−
w2
i,ka

2
1,kτ

2
i,k

2

)
(a2

1,k)−1

∝ (a2
1,k)sk−1 exp

(
−a2

1,k

(
1

2

sk∑
i=1

w2
i,kτ

2
i,k

))
. (44)

A similar computation leads to a similar expression for a2,k, with index i varying between sk + 1
and 2sk. Thus, defining I1 = {1, . . . , sk} and I2 = {sk + 1, . . . , 2sk} we have the general result

f(a2
j,k|τ 2

k) = G

a2
j,k

∣∣∣∣∣∣sk, 1

2

∑
i∈Ij

w2
i,kτ

2
i,k

 . (45)

3.2.4 Conditional distribution of pj,k

Denoting as ‖zk‖0,j the `0 pseudo-norm of the vector containing the element zi,k, i ∈ Ij , the
following result can be obtained

f(pj,k|zk) ∝
∏

i∈Ij ,zi,k=0

(1− pj,k)
∏

i∈Ij ,zi,k=1

pj,k

∝ (1− pj,k)sk−‖z‖0,jp
‖z‖0,j
j,k (46)

and thus
f(pj,k|zk) = Be (pj,k |‖z‖0,j + 1, sk − ‖z‖0,j + 1) . (47)
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4 Partially Collapsed Gibs Sampler (PCGS)

The proposed PCGS is given in Algorithm 1, whose purpose is to draw samples from the posterior
distribution f(xk,mk, zk, τ

2
k,ak,pk|yk). Once we have drawn enough realizations (nGibbs) and

ensured that Markov chain has converged (after discarding the firsts nburn-in iterations belonging
to the so-called the burn-in period), we can build the following estimators

ẑ = arg max
z∈{0,1}2sk

#M(z) (48)

p̂ =
1

#M(ẑ)

∑
m∈M(ẑ)

p(m) where p ∈ {xk,mk, τ
2
k,ak,pk} (49)

where #A denotes the cardinal of the set A, Ja, bK denotes the set of integers in [a, b] and

M(z) = {m ∈ Jnburn-in + 1, nGibbsK, z(m) = z}. (50)

In other words, the indicator vector z is estimated by its MAP estimator and the other parameters
by their MMSE estimators conditionally upon the estimated values of ẑ.

Algorithme 1 Proposed PCGS

Initialization: x
(0)
k ,m

(0)
k , z

(0)
k can be set tp their least squares estimators

Initialization: a
2(0)
1,k , a

2(0)
2,k are set to 1 for instance

for t = 1, ..., nGibbs do
for j = 1, 2 do

Draw p
(t)
j,k according to f(pj,k|z(t−1)

k )
end for
for i = 1 to 2sk do

if i ∈ {1, . . . , sk} then
j = 1

else if i ∈ {sk + 1, . . . , 2sk} then
j = 2

end if
Draw τ

2(t)
i,k according to f(τ2

i,k|m
(t−1)
i,k , a

2(t−1)
j,k , z

(t−1)
i,k )

Draw z
(t)
i,k according to f(zi,k|yi,k,x(t−1)

j,k , τ
2(t)
i,k , p

(t)
j,k)

Draw m
(t)
i,k according to f(mi,k|yi,k,x(t−1)

j,k , τ
2(t)
i,k , z

(t)
i,k)

end for
for j = 1, 2 do

Draw a
2(t)
j,k according to f(a2

j,k|τ
2(t)
k )

end for
Draw x

(t)
k according to f(xk|yk,m

(t)
k )

end for

Example of distributions obtained using the generated samples of mk (upon the estimated
values of ẑk) are shown in figure 1. As one can see, we only estimate non-zero values. More
specifically, we estimate satisfactory bias amplitudes for the nonzero values of the ground truth
(non centered distributions) and small biases for the zero values of the ground truth (centered
distributions). These estimates result in small bias estimates. However, non zero biases are
obtained in each channel. To improve the detection results, we can use a Metropolis Hastings
(MH) move proposing other values of zk according to the value of µmi,k . More precisely, we
can test if replacing a non-zero component of zk with small amplitude can be set to zero, after
accepting this move with the classical MH acceptance ratio.

7



Figure 1: Estimated posteriors and ground truth (vertical lines) for MP biases affecting pseudo-
ranges (left) and pseudorange rates (right) at fixed time instant. Note that three channels only
(channels #3, 5 and 7) are affected by MP biases.

5 Metropolis Hastings move

Despite its asymptotic convergence properties, the Gibbs sampler can be stuck around local mi-
nima [4, 5]. In this situation, its convergence can be accelerated by using appropriate Metropolis-
Hastings (MH) moves. More precisely, using the ideas developed in [4] and [5], we have included
MH moves, moving the indicators z in their neighborhood and accepting/rejecting these moves
using the MH acceptance ratio. The idea is for instance to test whether a bias with low mean
value µmi,k can be set to 0 or not. To do so, we propose a new value of z denoted as z̄, generate
the corresponding values of m̄ and τ̄ , and decide {z, τ} = {z̄, τ̄} with the standard MH accep-
tance probability [6]. The proposed move is summarized in Algorithm 2 and was implemented

with {γ1, η1, γ2, η2} = {1, 10, 1, 1}. This move is used in the PCGS before drawing x
(t)
k (hence the

superscript (t− 1)). The corresponding acceptance probability of this MH move can be computed
as (using the independence between the different measurements)

f(zk, τ
2
k|yk,xk, ck,pk, ak) =

2sk∏
i=1

f(zi,kτ
2
i,k|yi,k,xk,pk,a2

k) (51)
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and for i ∈ {1, ..., sk}

f(zi,k, τ
2
i,k|.) =

∫
R
f(zi,k, τ

2
i,k,mi,k|yi,k,x1,k, p1,k, a1,k)dmi,k

∝
∫
R
f(yi,k|mi,k,x1k)f(mi,k|zi,k, τ2

i,k)f(zi,k|p1,k)f(τ2
i,k|a2

1,k)dmi,k

∝
∫
R

exp

(
− (yi,kh̄i,kx1,k −mi,k)2

2c1,kµi,k

)δ(mi,k)(1− zi,k) +
exp

(
− m2

i,k

2c1,kτ2
i,k

)
√

2πc1,kτ2
i,k

zi,k


× [(1− p1,k)δ(zi,k) + p1,kδ(1− zi,k)] exp

(
−
w2
i,ka

2
1,kτ

2
i,k

2

)
dm2

i,k

∝
∫
R

exp

(
− (yi,kh̄i,kx1,k −mi,k)2

2c1,kµi,k

)(1− p1,k)δ(zi,k)δ(mi,k) + p1,k

exp
(
− m2

i,k

2c1τ2
i,k

)
√

2πc1,kτ2
i,k

δ(1− zi,k)

 dmi,k

(52)

× exp

(
−
w2
i,ka

2
1,kτ

2
i,k

2

)

∝
[

ui,k
ui,k + vi,k

δ(zi,k) +
vi,k

ui,k + vi,k
δ(1− zi,k)

]
exp

(
−
w2
i a

2
1τ

2
i,k

2

)
(53)

with ui,k, vi,k as defined in (33) and (34). Note that we had to make sure that the term between
brackets sums to 1 (i.e., divide by ui,k +vi,k), because the terms ui,k and vi,k both depend on τ2

i,k.
Then,

f(zi,k, τ
2
i,k|yi,k,x1, p1,k, a

2
1,k) ∝



1−p1,k

1−p1,k+p1,k

√
σ2mi,k

c1,kτ
2
i,k

exp

(
µ2mi,k

2σ2mi,k

) exp
(
−w

2
i a

2
1τ

2
i,k

2

)
if zi,k = 0

p1,k

√
σ2mi,k

c1,kτ
2
i,k

exp

(
µ2mi,k

2σ2mi,k

)

1−p1,k+p1,k

√
σ2mi,k

c1τ
2
i,k

exp

(
µ2mi,k

2σ2mi,k

) exp
(
−w

2
i a

2
1τ

2
i,k

2

)
if zi,k = 1

, i = 1, ..., sk.

(54)

Similar computations lead to

f(zi,k, τ
2
i,k|yi,k,x2, p2,k, a

2
2,k) ∝



1−p2,k

1−p2,k+p2,k

√
σ2mi,k

c2,kτ
2
i,k

exp

(
µ2mi,k

2σ2mi,k

) exp
(
−w

2
i a

2
2τ

2
i,k

2

)
if zi,k = 0

p2,k

√
σ2mi,k

c2,kτ
2
i,k

exp

(
µ2mi,k

2σ2mi,k

)

1−p2,k+p2,k

√
σ2mi,k

c2τ
2
i,k

exp

(
µ2mi,k

2σ2mi,k

) exp
(
−w

2
i a

2
2τ

2
i,k

2

)
if zi,k = 1

, i=sk+1,...,2sk.

Example of posterior distributions from the paper [1] for mk (given the estimated values of
ẑk) drawn from the proposed sampler including the MH move are displayed in Fig. 2. As one can
see, the detection is much more efficient with this method, as we only estimate the bias amplitudes
associated with the channels affected by multipath.

6 Simulation scenarios

The data were simulated using a real receiver trajectory (displayed in Fig. 3) and 8 real satellite
positions from a measurement campaign. The 16 corresponding measurements (8 pseudoranges

9



Algorithme 2 Metropolis Hastings move

Initialization z̄k = z
(t)
k

for i = 1 to 2sk do
if i ∈ {1, . . . , sk} then
j = 1

else if i ∈ {sk + 1, . . . , 2sk} then
j = 2

end if
Set z̄i,k corresponding to |µmi,k | < γj to 0
Set z̄i,k corresponding to |µmi,k | > ηj to 1

Draw m̄i,k from f(m̄i,k|yi,k,x(t−1)
j,k , τ

2(t)
i,k , z̄i,k)

Draw τ̄2
i,k from f(τ̄2

i,k|m̄i,k, a
2
j,k, z̄i,k)

end for

Set {z(t)
k , τ

2(t)
k } = {z̄k, τ̄ 2

k} with probability min

(
f(z̄k,τ̄

2
k|yk,xk,pk,ak)

f(z
(t)
k ,τ

2(t)
k |yk,xk,pk,ak)

, 1

)
if Proposal is accepted then

Draw mk from f(mk|yk,x
(t−1)
j,k , τ

2(t)
k , z

(t)
k )

end if

Figure 2: Estimated posteriors and ground truth (vertical lines) for MP biases affecting pseudo-
ranges (left) and pseudorange rates (right) at fixed time instant. Note that three channels only
(channels #3, 5 and 7) are affected by MP biases and that they are the only ones detected by the
proposed method when using the MH move.
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and 8 pseudorange rates) were generated according to Eq. (6) of the paper, where xk was generated
according to the reference trajectory, nk according to (7). The values of C/N0 and the vector mk

were generated according to Table 1. More precisely, for k 6∈ {50, ..., 130}, the value of C/N0 for
the different satellites were fixed to 45 dBHz, 43 dBHz, 45 dBHz, 42 dBHz, 43 dBHz, 45 dBHz,
43 dBHz and 45 dBHz. When k ∈ {50, ..., 130}, we changed the C/N0 values of the third, fifth
and seventh satellites to 35, 32 and 34 dBHz. The multipath bias vector mk was fixed to zero for
k 6∈ {50, ..., 130}. When k ∈ {50, ..., 130} we added biases to satellites 3, 5 and 7, equal to -20,
50 and 10 meters for the pseudoranges, and 10, 25 and -5 meters per second for the pseudorange
rates.

Parameter Value
C/N0,k, k 6∈ {50, ..., 130} (45, 43, 45, 42, 43, 45, 43, 45)
C/N0,k, k ∈ {50, ..., 130} (45, 43, 35, 42, 32, 45, 34, 45)
m1:8,k, k 6∈ {50, ..., 130} (0, 0, 0, 0, 0, 0, 0, 0)
m1:8,k, k ∈ {50, ..., 130} (0, 0,−20, 0, 50, 0, 10, 0)
m9:16,k, k 6∈ {50, ..., 130} (0, 0, 0, 0, 0, 0, 0, 0)
m9:16,k, k ∈ {50, ..., 130} (0, 0, 10, 0, 25, 0,−5, 0)

Table 1: Simulation parameters.

Figure 3: Reference and estimated trajectories (for one Monte-Carlo realization) with and without
MP detection/correction.

7 Simulation results

Figure 4 and 5 show the mean estimated biases over 100 Monte-Carlo runs, the corresponding
ground truth and the±σ variation versus time on pseudoranges and pseudorange rates respectively.
The corresponding position errors are given in figure 6.

We also challenged the proposed algorithm to more realistic scenarios including time-varying
multipath biases. More precisely, the biases were generated according to the following dynamics
mi,t+1 = mi,t + ni where ni ∼ N (0, σ2

i,m) for i = 1, ..., 2sk and σ2
i,m = 0.1m for the pseudoranges

11



Figure 4: Ground truth (plain) and estimated biases (dotted) for with their ±σ variations pseu-
doranges versus time (100 Monte Carlo runs).

Figure 5: Ground truth (plain) and estimated biases (dotted) with their ±σ variations for pseu-
dorange rates versus time (100 Monte Carlo runs).
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Figure 6: Planar and altitude errors for the EKF and the proposed method versus time (100
Monte Carlo runs) and their standard deviations.

(i = 1, ..., sk) and σ2
i,m = 0.01m.s−1 for the pseudorange rates (i = sk + 1, ..., 2sk). The results

are displayed in Fig. 7 for the pseudoranges and 8 for the pseudorange rates. The corresponding
position errors are displayed in Fig. 9. As we can observe, the biases are well estimated, even if
the amplitude estimates have more variance (especially for satellite #3 for instance, where we can
notice a gap in the amplitude estimate although the corresponding measurement is detected as
biased). Note that the improvement in positioning errors is also clear for this example.
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Figure 7: Ground truth (plain) and estimated biases (dotted) with their ±σ variations for pseu-
doranges versus time (100 Monte Carlo runs).

Figure 8: Ground truth (plain) and estimated biases (dotted) with their ±σ variations for pseu-
dorange rates versus time (100 Monte Carlo runs).
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Figure 9: Planar and altitude errors for the EKF and the proposed method versus time (100
Monte Carlo runs) and their standard deviations.
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