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Abstract

This document contains supplementary materials associated with the letter [1].

1 Introduction

The aim of the paper [1] is to estimate hyperspheres from noisy data clouds using the Expectation-
Maximization (EM) with Von Mises-Fisher priors. This document details some derivations and
shows additional experiments.

2 Derivations

2.1 Problem formulation

We consider n noisy measurements zi ∈ Rd, i = 1, ..., n located around a hypersphere with radius r
and center c ∈ Rd. We assume that the noise realizations corrupting the observations are mutually
independent and distributed according to the same isotropic multivariate Gaussian distribution.
We introduce latent vectors xi ∈ Rd, i = 1, ..., n corresponding to the unknown true locations
corrupted by an additive white Gaussian noise ni, i.e.,

zi = xi + ni, (TR-1)

where ni ∼ N (0d, σ
2Id), 0d is the zero vector of Rd, σ2 is the unknown noise power and Id is the

d× d identity matrix. The vectors xi are located on the hypersphere of radius r and center c and
can thus be defined as affine transformations of unit random vectors ui ∈ Rd (with ‖ui‖2 = 1)
such that

xi = c+ rui. (TR-2)

The vectors ui denoted as latent vectors are located on the hypersphere Hd of Rd defined by
‖ui‖2 = 1. They are assigned an a priori von Mises-Fisher probability distribution denoted as
ui ∼ vMFd(ui;µ, κ) with the following density

fd(ui;µ, κ) = Cd(κ) exp
(
κµTui

)
1Hd

(ui), (TR-3)

where µ ∈ Rd is the mean direction (with ‖µ‖2 = 1), κ ≥ 0 is the concentration parameter, and
Cd(κ) is the normalization constant given by

Cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
, (TR-4)
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where Iν(.) denotes the modified Bessel function of first kind of parameter ν.

2.2 Likelihood and complete likelihood

We store the unknown parameters of the statistical model in the vector θ = (r, cT , σ)T ∈ Rd+2

and the measurements in a matrix Z = (z1, . . . ,zn) ∈ Rd×n. The likelihood is then

L(θ;Z) =

n∏
i=1

p(zi|θ)

=

n∏
i=1

∫
p(zi|ui,θ)p(ui)dui

∝
n∏
i=1

(σ2)−
d
2

∫
H

exp

(
− 1

2σ2

[
(zi − c− rui)T (zi − c− rui)

])
exp

(
κµTui

)
dui

∝
n∏
i=1

(σ2)−
d
2

∫
H

exp

(
− 1

2σ2

[
‖zi − c‖22 + r2 − 2

{
r(zi − c)T + σ2κµT

}
ui
])

dui

∝
n∏
i=1

(σ2)−
d
2 exp

(
− 1

2σ2

[
‖zi − c‖22 + r2

])∫
H

exp

(
r(zi − c)Tui + σ2κµTui

σ2

)
dui

∝
n∏
i=1

(σ2)−
d
2 exp

(
− 1

2σ2

[
‖zi − c‖22 + r2

])∫
H

exp

(
‖r(zi − c) + σ2κµ‖2

σ2

r(zi − c)T + σ2κµT

‖r(zi − c) + σ2κµ‖2
ui

)
dui.

(TR-5)

We denote

κi =
‖r(zi − c) + σ2κµ‖2

σ2
(TR-6)

µi =
r(zi − c) + σ2κµ

‖r(zi − c) + σ2κµ‖2
, (TR-7)

to have

L(θ;Z) ∝
n∏
i=1

(σ2)−
d
2 exp

(
− 1

2σ2

[
‖zi − c‖22 + r2

])∫
H

exp
(
κiµ

T
i ui

)
dui

∝
N∏
i=1

(σ2)−
d
2 exp

(
− 1

2σ2

[
‖zi − c‖22 + r2

])
Cd(κi)

−1

∝ (σ2)−
nd
2 exp

(
−

n∑
i=1

1

2σ2

[
‖zi − c‖22 + r2

]) n∏
i=1

Id/2−1 (κi)

κ
d/2−1
i

. (TR-8)

Note that we have used the property that fd in (TR-3) is a pdf whose integral is one. If one wants
to compute the maximum likelihood estimator of θ, one has to differentiate the log-likelihood with
respect to θ. This log-likelihood is defined by

logL(θ;Z) = K − nd

2
log σ2 −

n∑
i=1

1

2σ2

[
‖zi − c‖22 + r2

]
+

n∑
i=1

log

(
Id/2−1 (κi)

κ
d/2−1
i

)
. (TR-9)

Derivating the log-likelihood with respect to r yields

∂ logL
∂r

= −n r

σ2
+

n∑
i=1

∂

∂r
log

(
Id/2−1 (κi)

κ
d/2−1
i

)
,
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with

∂

∂r
log

(
Id/2−1 (κi)

κ
d/2−1
i

)
=
∂κi
∂r

∂

∂κi
log

(
Id/2−1 (κi)

κ
d/2−1
i

)
, (TR-10)

and [2, Chap. 10.29.4]

1

x

∂

∂x
x−νIν = x−ν−1Iν+1(x)

⇒ ∂

∂x
x−νIν = x−νIν+1(x)

⇒ ∂

∂κi

Id/2−1

κ
d/2−1
i

=
Id/2(κi)

κ
d/2−1
i

, (TR-11)

so

∂

∂κi
log

(
Id/2−1 (κi)

κ
d/2−1
i

)
=

Id/2(κi)

κ
d/2−1
i

Id/2−1(κi)

κ
d/2−1
i

=
Id/2(κi)

Id/2−1 (κi)
. (TR-12)

On the other hand

∂κi
∂r

=
∂

∂r

‖r(zi − c) + σ2κµ‖2
σ2

=
1

σ2
(zi − c)T

r(zi − c) + σ2κµ

‖r(zi − c) + σ2κµ‖2
, (TR-13)

leading to

∂ logL
∂r

= −n r

σ2
+

n∑
i=1

1

σ2
(zi − c)T

r(zi − c) + σ2κµ

‖r(zi − c) + σ2κµ‖2

Id/2

(
‖r(zi−c)+σ2κµ‖2

σ2

)
Id/2−1

(
‖r(zi−c)+σ2κµ‖2

σ2

) . (TR-14)

Solving for ∂ logL
∂r = 0 seems pretty hard (and we have to do the same for c and σ) so we propose

to study an EM algorithm to simplify the estimation problem. The EM algorithm relies on the
so-called complete likelihood defined as

Lc (θ;Z,U) =

n∏
i=1

p(zi,ui|θ)

=

n∏
i=1

p(zi|θ,ui)p(ui)

∝
n∏
i=1

(σ2)−
d
2 exp

(
− 1

2σ2

[
(zi − c− rui)T (zi − c− rui)

])
exp

(
κµTui

)
1H(ui)

∝ (σ2)−
nd
2 exp

(
− 1

2σ2

n∑
i=1

[
(zi − c− rui)T (zi − c− rui)− 2σ2κµTui

])
1H(ui)

∝ (σ2)−
nd
2 exp

(
− 1

2σ2

n∑
i=1

[
‖zi − c‖22 + r2 − 2(r(zi − c) + σ2κµ)Tui

])
1H(ui),

(TR-15)

where U = (u1, ...,un) ∈ Rd×n.
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2.3 E step

The E step consists in computing the function

Q(θ|θ(t)) = EU |Z,θ(t) [logLc (θ;Z,U)] . (TR-16)

Assuming ui ∈ Hd to alleviate the notations, we have

logLc (θ;Z,U) = K − nd

2
log σ2 − 1

2σ2

n∑
i=1

[
‖zi − c‖22 + r2 − 2(r(zi − c) + σ2κµ)Tui

]
,

hence

Q(θ|θ(t)) = EU |Z,θ(t)

[
K − nd

2
log σ2 − 1

2σ2

n∑
i=1

(
‖zi − c‖22 + r2 − 2(r(zi − c) + σ2κµ)Tui

)]

= K − nd

2
log σ2 − 1

2σ2

n∑
i=1

(
‖zi − c‖22 + r2 − 2(r(zi − c) + σ2κµ)TEU |Z,θ(t) [ui]

)
.

(TR-17)

Using Bayes’ theorem and the derivations that led to (TR-5) and (TR-15) allows the following
result to be obtained

p(U |Z,θ(t)) =

n∏
i=1

p(ui|zi,θ(t))

∝
n∏
i=1

p(zi|ui,θ(t))p(ui)

∝ ((σ(t))2)−
nd
2 exp

(
− 1

2(σ(t))2

n∑
i=1

[
‖zi − c(t)‖22 + (r(t))2 − 2(r(t)(zi − c(t)) + (σ(t))2κµ)Tui

])
1H(ui) ∝ ((σ(t))2)−

nd
2 exp

(
− 1

2(σ(t))2

n∑
i=1

[
‖zi − c(t)‖22 + (r(t))2 − 2(σ(t))2κ

(t)
i (µ

(t)
i )Tui

])
1H(ui)

∝
n∏
i=1

exp
(
κ
(t)
i (µ

(t)
i )Tui

)
1H(ui), (TR-18)

where

κ
(t)
i =

‖r(t)(zi − c(t)) + (σ(t))2κµ‖2
(σ(t))2

(TR-19)

µ
(t)
i =

r(t)(zi − c(t)) + (σ(t))2κµ

‖r(t)(zi − c(t)) + (σ(t))2κµ‖2
. (TR-20)

Thus, the conditional distribution of ui given Z and θ(t) is a von Mises-Fisher distribution with

parameters κ
(t)
i and µ

(t)
i , whose expectation is

EU |Z,θ(t) [ui] =
Id/2(κ

(t)
i )

Id/2−1(κ
(t)
i )
µ

(t)
i , (TR-21)

that can be plugged into (TR-17) to obtain

Q(θ|θ(t)) = K − nd

2
log σ2 − 1

2σ2

n∑
i=1

(
‖zi − c‖22 + r2 − 2(r(zi − c) + σ2κµ)T

Id/2(κ
(t)
i )

Id/2−1(κ
(t)
i )
µ

(t)
i

)
.
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2.4 M step

In the M step, the function Q is optimized with respect to θ. To simplify the computations, we
define

α
(t)
i =

Id/2(κ
(t)
i )

Id/2−1(κ
(t)
i )
µ

(t)
i , (TR-22)

to obtain

argmax
θ

Q(θ|θ(t)) = argmin
r,c,σ

nd

2
log σ2 +

1

2σ2

n∑
i=1

(
cT c+ zTi zi + r2 − 2cTzi + 2rcTα

(t)
i − 2rzTi α

(t)
i − 2σ2κµTα

(t)
i

)
=argmin

r,c,σ

nd

2
log σ2 +

1

2σ2

(
ncT c+

n∑
i=1

zTi zi + nr2 − 2cT
n∑
i=1

zi + 2rcT
n∑
i=1

α
(t)
i − 2r

n∑
i=1

zTi α
(t)
i

)
.

(TR-23)

The problem can be decoupled with (r, c) on one side and σ2 on the other side because

arg min
r,c

nd

2
log σ2 +

1

2σ2

(
ncT c+

n∑
i=1

zTi zi + nr2 − 2cT
n∑
i=1

zi + 2rcT
n∑
i=1

α
(t)
i − 2r

n∑
i=1

zTi α
(t)
i

)

= arg min
r,c

(
ncT c+ nr2 − 2cT

n∑
i=1

zi + 2rcT
n∑
i=1

α
(t)
i − 2r

n∑
i=1

zTi α
(t)
i

)
. (TR-24)

Denoting

H(t) =

[
n

∑n
i=1(α

(t)
i )T∑n

i=1α
(t)
i nId

]
(TR-25)

f (t) =

[∑n
i=1(α

(t)
i )Tzi∑n

i=1 zi

]
, (TR-26)

Problem (TR-24) can be written as

(r(t+1), c(t+1)) = arg min
θ0=(r,cT )T∈Rd+1

1

2
θT0H

(t)θ0 − (f (t))Tθ0. (TR-27)

2.4.1 Determinant of the matrix H(t)

We propose to show by induction on the dimension d that the determinant of the matrix H(t) is

det(H(t)) = nd−1

n2 − ∥∥∥∥∥
n∑
i=1

α
(t)
i

∥∥∥∥∥
2

2

 . (TR-28)

To simplify the notations, we have removed the superscript (t) from H and have included a
subscript associated with the dimension of the hypersphere d. Moreover, we introduce the notation∑n
i=1α

(t)
i = ad = (a1, . . . , ad)

T ∈ Rd.

• Initialization d = 1

When d = 1, we have

H1 =

[
n a1
a1 n

]
, (TR-29)

and

det(H1) = n2 − a21
= n1−1(n2 − ‖a1‖22). (TR-30)

Therefore the property is true for d = 1.
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• Induction

We assume that for a given d ≥ 1 we have

det(Hd) = nd−1
(
n2 − ‖ad‖22

)
. (TR-31)

and we show that
det(Hd+1) = nd

(
n2 − ‖ad+1‖22

)
, (TR-32)

Using a block decomposition of Hd+1 versus Hd, we obtain

det(Hd+1) = det




Hd

ad+1

0
...
0

ad+1 0 . . . 0 n




= n det(Hd) + (−1)d+1ad+1det

([
ad nId
ad+1 0 . . . 0

])
= n det(Hd) + (−1)d+1(−1)da2d+1n

d

= nnd−1
(
n2 − ‖ad‖22

)
− a2d+1n

d

= nd
(
n2 − ‖ad‖22 − a

2
d+1

)
= nd

(
n2 − ‖ad+1‖22

)
,

which proves the induction and thus (TR-28).

2.4.2 Invertibility of the matrix Hd

We would like to show that for any d ≥ 2, the matrix Hd is invertible. We have from (TR-28)

det(Hd) = nd−1

n2 − ∥∥∥∥∥
n∑
i=1

α
(t)
i

∥∥∥∥∥
2

2

 . (TR-33)

Applying the triangular inequality leads to∥∥∥∥∥
n∑
i=1

α
(t)
i

∥∥∥∥∥
2

<

n∑
i=1

∥∥∥α(t)
i

∥∥∥
2
, (TR-34)

where ∥∥∥α(t)
i

∥∥∥
2

=

∥∥∥∥∥ Id/2(κ
(t)
i )

Id/2−1(κ
(t)
i )
µ

(t)
i

∥∥∥∥∥
2

=
Id/2(κ

(t)
i )

Id/2−1(κ
(t)
i )

∥∥∥µ(t)
i

∥∥∥
2

≤ 1, (TR-35)

because
∥∥∥µ(t)

i

∥∥∥
2

= 1 and Iν is a decreasing function of ν [2, Chap. 10.37]. Using (TR-34) yields∥∥∥∥∥
n∑
i=1

α
(t)
i

∥∥∥∥∥
2

< n. (TR-36)
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The strict inequality in (TR-34) is justified since all the µ
(t)
i , and hence all the α

(t)
i , are not

colinear. Finally, we have∥∥∥∥∥
n∑
i=1

α
(t)
i

∥∥∥∥∥
2

2

< n2 ⇔ det(Hd) > 0 for any d ≥ 2, (TR-37)

which proves the invertibility of the matrixH(t) for any dimension d. Moreover, H(t) is a so-called
arrowhead matrix whose inverse has a closed-form expression [3]

H−1d =
1

n2 − aTd ad

[
n −aTd
−ad n2−aT

d ad

n Id + 1
nada

T
d

]
. (TR-38)

2.4.3 Solution of the minimization problem

The problem (TR-27) has a global minimum if H(t) is symmetric positive definite. Here, H(t) is
clearly symmetric. Using the Sylvester criterion, a matrix A = (ai,j)1≤i,j≤n ∈ Rn×n is positive
definite if and only if all the n submatrices Ap = (ai,j)1≤i,j≤p, p = 1, . . . , n have a strictly positive
determinant. For p = 2, . . . , d + 1, the submatrices of Hd are the matrices H1, ...,Hd defined
before. We have seen that the determinants of these matrices are strictly positive. The missing
submatrix corresponds to p = 1, i.e., to the first coefficient of the matrix H(t), which is n and
thus is strictly positive. Therefore the Sylvester criterion allows us to claim that the matrix H(t)

is positive definite, and therefore the problem (TR-27) has a unique solution, given by[
r(t+1)

c(t+1)

]
= (H(t))−1f (t). (TR-39)

We can deduce the solution for σ(t) solving

arg min
σ

nd

2
log σ2 +

1

2σ2
M (t+1), (TR-40)

where

M (t+1) =

n∑
i=1

(
(c(t+1))T c(t+1) + (r(t+1))2 − 2(c(t+1))Tzi + 2r(t+1)(c(t+1))Tα

(t)
i − 2r(t+1)zTi α

(t)
i + zTi zi

)
= 2

(
1

2
θT0H

(t)θ0 − (f (t))Tθ0

)
+

n∑
i=1

‖zi‖22

=

n∑
i=1

‖zi‖22 − (f (t))T (H(t))−1f (t)

=

n∑
i=1

‖zi‖22 − (f (t))T
[
r(t+1)

c(t+1)

]
. (TR-41)

The number M (t+1) can be expressed as

M (t+1) =

n∑
i=1

[
(c(t+1))T c(t+1) + (r(t+1))2 − 2(c(t+1))Tzi + 2r(t+1)(c(t+1))Tα

(t)
i − 2r(t+1)zTi α

(t)
i + zTi zi

]
=

n∑
i=1

[
(c(t+1) − zi + r(t+1)α

(t)
i )T (c(t+1) − zi + r(t+1)α

(t)
i ) + (r(t+1))2(1− (α

(t)
i )Tα

(t)
i )
]

=

n∑
i=1

[∥∥∥c(t+1) − zi + r(t+1)α
(t)
i

∥∥∥2
2

+ (r(t+1))2
(

1−
∥∥∥α(t)

i

∥∥∥2
2

)]
. (TR-42)
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Using (TR-35), we obtain

(
1−

∥∥∥α(t)
i

∥∥∥2
2

)
≥ 0 for any i = 1, . . . , n, which guarantees

M (t+1) ≥ 0. (TR-43)

Denoting fσ : σ 7→ nd
2 log σ2 + 1

2σ2M
(t+1) the function to minimize with respect to σ, we have

dfσ
dσ

= nd
1

σ
− 1

σ3
M (t+1), (TR-44)

and

d2fσ
dσ2

= −nd 1

σ2
+

3

σ4
M (t+1). (TR-45)

Our problem has a unique global optimum given by

dfσ
dσ

= 0 ⇔ σ(t+1) =

√
M (t+1)

nd
. (TR-46)

The seconde derivative of this function at this point is

d2fσ
dσ2

(σ(t+1)) = − (nd)2

M (t+1)
+

3(nd)2

(M (t+1))2
M (t+1)

=
2(nd)2

M (t+1)
, (TR-47)

which is positive ensuring that the optimum of fσ is a minimum.

3 Additional experiments

This section presents several additional results compared to those available in the signal processing
letter [1].

3.1 Uniform prior in 2D

This section shows more results in 2 dimensions, obtained using a uniform prior over the unit circle
for the latent variable. The scenario is explained in Fig. 1, where c = (2, 3), r = 5 and σ = 0.1. For
the simulations, 500 Monte-Carlo runs were ran for each value of σ ∈ [0.01, 10]. For each run, the
center has been sampled uniformly on the grid {−5,−4, . . . , 4, 5} × {−5,−4, . . . , 4, 5} and r is an
integer uniformly sampled between 1 and 10. Corresponding MSEs for θ = (r, cT )T are displayed
in Fig. 2 and for σ in Fig. 3. In addition here, we show the MSEs on the radius r and the center
c in Fig. 4a and Fig. 4b.
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Figure 1: Scenario with a uniform prior for the latent variables, with c = (2, 3), r = 5 and σ = 0.1.
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Figure 2: MSEs for θ̂ = (r̂, ĉT )T for E-Landau, Kasa, IML and EM (proposed method) versus
noise power σ2 (500 Monte Carlo runs) when latent variables have a uniform prior (κ = 0) in 2D.
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Figure 3: MSEs for σ2 EM (proposed method) versus noise power σ2 (500 Monte Carlo runs)
when latent variables have a uniform prior (κ = 0) in 2D.
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(a) MSE on the radius.
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(b) MSE on the center.

Figure 4: MSEs for the radius (left) and the center (right) for E-Landau, Kasa, IML and EM
(proposed method) versus noise power σ2 (500 Monte Carlo runs) when latent variables have a
uniform prior (κ = 0) in 2D.
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Figure 5: MSEs for θ̂ = (r̂, ĉT )T for E-Landau, Kasa, IML and EM (proposed method) versus
noise power σ2 (500 Monte Carlo runs) when latent variables have a uniform prior (κ = 0) in 3D.
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Figure 6: MSEs for σ2 EM (proposed method) versus noise power σ2 (500 Monte Carlo runs)
when latent variables have a uniform prior (κ = 0) in 3D.

3.2 Uniform prior in 3D

This section shows more results in 3 dimensions, obtained using a uniform prior over the unit
circle for the latent variable. For the simulations, 500 Monte-Carlo runs were ran for each value of
σ ∈ [0.01, 10]. For each run, the center has been sampled uniformly on the grid {−5,−4, . . . , 4, 5}×
{−5,−4, . . . , 4, 5} and r is an integer uniformly sampled between 1 and 10. Corresponding MSEs
for θ = (r, c) are displayed in Fig. 5 and for σ in Fig. 6. In addition here, we show the MSEs on
the radius r and the center c in Fig. 7a and Fig. 7b.
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(a) MSE on the radius.
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(b) MSE on the center.

Figure 7: MSEs for the radius (left) and the center (right) for FGFA, ILS and EM (proposed
method) versus noise power σ2 (500 Monte Carlo runs) when latent variables have a uniform prior
(κ = 0) in 3D.
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3.3 Informative prior in 2D

This section presents some simulation results obtained with a von Mises-Fisher prior with param-

eters κ = 2 and µ =
[
cos(π4 ) sin(π4 )

]T
. The scenario is illustrated in Fig. 8 for c = (1,−2), r = 5

and σ = 0.1. The same previous strategy was applied to obtain the corresponding MSEs for θ̂,
which are displayed in Fig. 9 and in Fig. 10 for σ2 . We also display the MSEs for both the radius
r and the center c in Figs. 11a and 11b. The results confirm the interest of the EM algorithm for
hypersphere fitting using an informative prior defined as a von Mises-Fisher distribution.
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Figure 8: Scenario for a von Mises-Fisher prior with parameters κ = 2 and µ corresponding to an
angle π/4, for c = (1,−2), r = 5 and σ = 0.1.
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Figure 9: MSEs for θ̂ = (r, cT )T for E-Landau, Kasa, IML and EM (proposed method) versus
noise power σ2 (500 Monte Carlo runs) when data have a von Mises prior (κ = 2) in 2D.
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Figure 10: MSE for σ2 EM (proposed method) versus noise power σ2 (500 Monte Carlo runs)
when latent variables have an informative prior in 2D.
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(a) MSE on the radius.
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(b) MSE on the center.

Figure 11: MSEs for the radius (left) and the center (right) for E-Landau, Kasa, IML and EM
(proposed method) versus noise power σ2 (500 Monte Carlo runs) when data have a von Mises-
Fisher prior (κ = 2) in 2D.
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3.4 Informative prior in 3D

This section presents some simulation results obtained with a von Mises-Fisher prior with pa-
rameters κ = 2 and µ = [sin (π/4) cos (π/3) , sin (π/4) sin (π/3) , cos (π/4)]

T
. The same previous

strategy was applied to obtain the corresponding MSEs for θ̂, which are displayed in Fig. 12 and
in Fig. 13 for σ2 . We also display the MSEs for both the radius r and the center c in Figs. 14a
and 14b. The results confirm the interest of the EM algorithm for hypersphere fitting using an
informative prior defined as a von Mises-Fisher distribution.
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Figure 12: MSEs for θ̂ = (r, cT )T for FGFA, ILS and EM (proposed method) versus noise power
σ2 (500 Monte Carlo runs) when data have a von Mises prior (κ = 2) in 3D.
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Figure 13: MSE for σ2 EM (proposed method) versus noise power σ2 (500 Monte Carlo runs)
when latent variables have an informative prior in 3D.
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(a) MSE on the radius.

-20 -15 -10 -5 0 5 10

-30

-25

-20

-15

-10

-5

0

5

10

(b) MSE on the center.

Figure 14: MSEs for the radius (left) and the center (right) for FGFA, ILS and EM (proposed
method) versus noise power σ2 (500 Monte Carlo runs) when data have a von Mises-Fisher prior
(κ = 2) in 3D.
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3.5 Influence of n

The previous results were obtained with n = 100 data. Here we will display the results on the
first scenario (uniform prior) with n = 50 and n = 30. Fig. 15 shows the MSE on θ̂, Fig. 16 shows
the MSE on the radius, and Fig. 17 shows the MSE for the center. As one can see, the proposed
method offers the best MSEs in any case.
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(a) MSE on θ̂ for n = 30 data.
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(b) MSE on θ̂ for n = 50 data.

Figure 15: MSEs for θ̂ for n = 30 (left) and n = 50 (right) for E-Landau, Kasa, IML and EM
(proposed method) versus noise power σ2 (500 Monte Carlo runs) when data have a uniform prior
(κ = 0).
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(a) MSE on the radius for n = 30 data.
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(b) MSE on the radius for n = 50 data.

Figure 16: MSEs for the radius for n = 30 (left) and n = 50 (right) for E-Landau, Kasa, IML and
EM (proposed method) versus noise power σ2 (500 Monte Carlo runs) when data have a uniform
prior (κ = 0).
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(a) MSE on the center for n = 30 data.
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(b) MSE on the center for n = 50 data.

Figure 17: MSEs for the center for n = 30 (left) and n = 50 (right) for E-Landau, Kasa, IML and
EM (proposed method) versus noise power σ2 (500 Monte Carlo runs) when data have a uniform
prior (κ = 0).
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