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Abstract—This paper studies a new expectation maximization
(EM) algorithm to estimate the centers and radii of multiple
hyperspheres. The proposed method introduces latent variables
indicating to which hypersphere each vector from the dataset
belongs to, in addition to random latent vectors having an a
priori von Mises-Fisher distribution characterizing the location
of each vector on the different hyperspheres. This statistical
model allows a complete data likelihood to be derived, whose
expected value conditioned on the observed data has a known
distribution. This property leads to a simple and efficient EM
algorithm whose performance is evaluated for the estimation of
hypersphere mixtures yielding promising results.

Index Terms—Mixture distribution, hypersphere fitting,
expectation-maximization algorithm.

I. INTRODUCTION

Hypersphere estimation can be found in many applications
including object tracking [1]–[3], robotics [4]–[6] or image
processing and pattern recognition [7]–[9]. This problem was
recently investigated in [10] for a single hypersphere by
introducing latent variables defined as affine transformations
of random vectors distributed according to von Mises-Fisher
distributions. The von Mises-Fisher distribution is a proba-
bility distribution defined on the unit hypersphere, which is
parameterized by a mean vector and a concentration parameter.
This distribution reduces to the uniform distribution on the
hypersphere when the concentration parameter equals zero,
or to more informative distributions for other values of this
concentration parameter.

An expectation-maximization (EM) algorithm [11] was in-
vestigated in [10] using variables with a von Mises-Fisher prior
distribution, allowing the parameters of a single hypersphere
(radius and center), and possibly the hyperparameters of the
von Mises-Fisher distribution to be estimated. This paper
generalizes this algorithm to estimate the parameters of a
mixture of hyperspheres. In order to build this generalization,
each observation is assigned a latent variable indicating the
hypersphere it belongs to. The parameters of the different
hyperspheres, the hyperparameters of the different von Mises-
Fisher priors and the mixture proportions are then estimated
conditionally to these latent variables, via a new EM algorithm
generalizing the strategy introduced in [10].

The authors would like to thank the Agrophen platform (https://doi.org/10.
15454/1.5483266728434124E12) from Phenome-Emphasis supported by the
project Phenome-ANR-11-INBS-0012 for useful feedback about this work.

The paper is organized as follows. Section II extends the
maximum likelihood (ML) formulation of the hypersphere fit-
ting problem to a mixture of hyperspheres. A specific attention
is devoted to the estimation of the model hyperparameters
that can be estimated jointly with the hypersphere centers
and radii and the corresponding noise variances. Section III
evaluates the performance of the resulting EM algorithm for
fitting a mixture of hyperspheres, using multiple experiments
conducted on synthetic data. Conclusions and future works are
reported in Section IV.

II. A NEW EM ALGORITHM FOR MIXTURES OF
HYPERSPHERES

A. Problem Formulation

Consider n noisy measurements yi ∈ Rd, i = 1, ..., n
located around K hyperspheres with radii rk > 0 and centers
ck ∈ Rd, k = 1, ...,K. We assume that the noise realizations
corrupting the observations are mutually independent and dis-
tributed according to the same isotropic multivariate Gaussian
distribution. If an observation belongs to the kth hypersphere,
the hypersphere fitting problem can then be formulated as
an ML estimation problem by introducing hidden vectors
xi ∈ Sd−1, i = 1, ..., n, where Sd−1 is the centered unit
hypersphere in Rd [10]. These hidden vectors are unknown
unit vectors located on the hypersphere such that

yi = ck + rkxi + ei, (1)

where ei ∼ N (0d, σ
2
kId) is the ith model error, 0d is the

zero vector of Rd, σ2
k > 0 is the unknown noise variance and

Id is the d × d identity matrix. The vectors xi are assigned
independent von Mises-Fisher distributions denoted as xi ∼
vMFd(xi;µk, κk) with density

fd(xi;µk, κk) = Cd(κk) exp
(
κkµ

T
k xi

)
1Sd−1(xi), (2)

where µk ∈ Rd is the mean direction with ∥µk∥2 = 1,
κk ≥ 0 is the concentration parameter, 1Sd−1(.) is the indicator
function of Sd−1, and Cd(κk) is a normalization constant
(recalled in [10]). Note that this distribution reduces to the
uniform distribution on the hypersphere for κk = 0 and is
more informative for κk > 0. It is well-suited for LiDAR
applications whose calibration can be achieved using sphere
imaging [12]. Indeed, in this case, the LiDAR beam only hits
a part of a sphere, resulting in points located in this area,
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concentrated around a mean direction with a certain deviation
around this direction, which is well modelled by a von Mises-
Fisher distribution.

If each hypersphere to which an observation belongs would
be known, the hypersphere fitting problem would simply
consists in estimating the hypersphere radii r = {r1, . . . , rK}
and centres c = {c1, . . . , cK} (and possibly the noise vari-
ances σ2 = {σ2

1 , . . . , σ
2
K}) from the measurements Y =

{y1, . . . ,yn} , given that the latent vectors X = {x1, . . . ,xn}
are missing. However, the hyperspheres associated with the
different observations are generally unknown, which compli-
cates the estimation problem significantly.

B. Likelihood and complete likelihood

Denoting as π = {π1, . . . , πK} the vector of hypersphere
proportions and using (1), the conditional distribution of yi

given xi and the unknown proportions πk is a mixture of
Gaussian distributions, i.e.,

p(yi|xi,θ) =

K∑
k=1

πk

(2πσ2
k)

d/2
exp

{
−∥yi − ck − rkxi∥22

2σ2
k

}
,

(3)

where θ = (θT
1 , . . . ,θ

T
K)T contains the unknown parameters

of the proposed statistical model and θk = (πk, rk, c
T
k , σ

2
k)

T

contains the unknown parameters of a single hypersphere.
Note that the hypersphere proportions sum to one, i.e.,

K∑
k=1

πk = 1. (4)

We propose to introduce latent vectors zi ∈ RK , i = 1, . . . , n
such that zik = 1 if yi belongs to the k-th sphere and zik = 0
otherwise. The set of vectors zi (vectors of RK with a single
non-zero element equal to one) is denoted as OK . Based
on (3), the following conditional likelihood can be obtained:

p(yi|xi, zi,θ) =

K∏
k=1

[
1

(2πσ2
k)

d/2
e
− ∥yi−ck−rkxi∥

2
2

2σ2
k

]zik

. (5)

The latent vector zi = (zi1, ..., ziK)T is naturally assigned a
categorical distribution, i.e.,

p(zi|θ) =
K∏

k=1

πzik
k 1OK (zi), (6)

where 1OK (.) is the indicator function of OK . The density of
xi for a given sphere is obtained from (2), leading to

p(xi|zi,θ) =
K∏

k=1

[
Cd(κk) exp

(
κkµ

T
k xi

)]zik
1Sd−1(xi).

(7)
The (marginal) likelihood of this model, which does not
involve the latent vectors (xi, zi), is

L (θ;Y ) =

n∏
i=1

p(yi|θ) =
n∏

i=1

∫
Sd−1

∑
zi∈OK

p(yi,xi, zi|θ)dxi.

(8)

As explained in [10] for hypersphere fitting, a closed-form
expression for the ML estimator (MLE) of θ cannot be
derived. Instead, we propose to use the EM algorithm [11]
to estimate the unknown vector θ. The so-called complete
likelihood associated with the previous mixture model for K
hyperspheres is

Lc (θ;Y ,X,Z) =

n∏
i=1

p(yi,xi, zi|θ), (9)

where Z = {z1, ...,zn}. Moreover, using the relation
p(yi,xi, zi|θ) = p(yi|xi, zi,θ)p(xi|zi,θ)p(zi|θ) and (5),
(6) and (7), the following result is obtained

p(yi,xi, zi|θ) =
K∏

k=1

[
πkCd(κk)

(2πσ2
k)

d/2
exp

(
−∥yi − ck − rkxi∥22 − 2σ2

kκkµ
T
k xi

2σ2
k

)]zik
,

where the indicator function has been omitted for brevity and
it is assumed that xi ∈ Sd−1 and zi ∈ OK .

C. Proposed EM Algorithm

The EM algorithm alternates between two steps referred to
as expectation (E) and maximization (M) steps that are recalled
below for iteration (t+ 1) [11]:
1- The E-step consists of computing Q(θ|θ(t)), the expected

value of the complete data log-likelihood given the observed
data and the current parameter estimate θ(t), defined as

Q(θ|θ(t)) = EX,Z|Y ,θ(t) [logLc (θ;Y ,X,Z)] . (10)

2- The M-step consists of estimating θ(t+1) by solving

θ(t+1) = argmax
θ

Q(θ|θ(t)).

s.t.
K∑

k=1

πk = 1. (11)

The complete log-likelihood can be computed using (9) and
(10). Straightforward computations lead to

logLc (θ;Y ,X,Z) =
K∑

k=1

[
log πk − d

2
log σ2

k + logCd(κk)

] n∑
i=1

zik

−
K∑

k=1

1

2σ2
k

n∑
i=1

(
∥yi − ck∥22 + r2k

)
zik

+

K∑
k=1

n∑
i=1

κikµ
T
ikxizik + C, (12)

where C is an additive term independent of θ and

κik =
∥rk(yi − ck) + σ2

kκkµk∥2
σ2
k

, (13)

µik =
rk(yi − ck) + σ2

kκkµk

∥r(yi − ck) + σ2
kκkµk∥2

. (14)



Note that (13) and (14) ensure that µik has a unit norm, as re-
quired for the von Mises-Fisher distributions. The distribution
of X,Z|Y ,θ(t) can be determined as

p(X,Z|Y ,θ(t)) =

n∏
i=1

p(xi, zi|yi,θ
(t)), (15)

where each term can be determined using (5), (6) and (7), i.e.,

p(xi, zi|yi,θ) ∝ p(yi|xi, zi,θ)p(xi|zi,θ)p(zi|θ), (16)

∝
K∏

k=1

[γ̃ikfd(xi;µik, κik)]
zik , (17)

where ∝ means “proportional to” and

γ̃ik =
πk

(σ2
k)

d/2

Cd(κk)

Cd(κik)
exp

(
−∥yi − ck∥22 + r2k

2σ2
k

)
. (18)

Defining

γik =
γ̃ik∑K
k=1 γ̃ik

, k = 1, ...,K (19)

the following results are obtained:

EX,Z|Y ,θ(t) [zik] = γ
(t)
ik , (20)

EX,Z|Y ,θ(t) [xizik] = γ
(t)
ik Ad(κ

(t)
ik )µ

(t)
ik , (21)

where κ
(t)
ik ,µ

(t)
ik and γ

(t)
ik are computed from (13), (14), (18),

and (19) using the current values of rk, ck, σ2
k, πk, κk and µk.

Note that (21) has been obtained using the mean of a von
Mises-Fisher distribution, where

Ad(κ) =
Id/2(κ)

Id/2−1(κ)
, (22)

and where Iν(.) denotes the modified Bessel function of the
first kind of parameter ν [13, Chap. 10.25].

After substituting these expectations into (12), the con-
strained maximization of the function Q(θ|θ(t)) with respect
to θ leads to the following updates for rk, ck, σ2

k, and πk

r
(t+1)
k =

1

1− uT
ktukt

(uTykt − uT
ktykt), (23)

c
(t+1)
k = ykt − r

(t+1)
k ukt, (24)

dσ2
k
(t+1)

= ∥y∥22kt + ∥c(t+1)
k ∥22 + r

(t+1)
k

2

−2

{
c
(t+1)
k

T
ykt + r

(t+1)
k

[
uTykt − uT

ktc
(t+1)
k

]}
,

(25)

π
(t+1)
k =

γ
(t)
k

n
, (26)

with

γ
(t)
k =

n∑
i=1

γ
(t)
ik , ukt =

1

γ
(t)
k

n∑
i=1

γ
(t)
ik α

(t)
ik , (27)

α
(t)
ik = Ad(κ

(t)
ik )µ

(t)
ik , ykt =

1

γ
(t)
k

n∑
i=1

γ
(t)
ik yi, (28)

uTykt =
1

γ
(t)
ik

n∑
i=1

γ
(t)
ik yT

i α
(t)
ik , ∥y∥22kt =

1

γ
(t)
ik

n∑
i=1

γ
(t)
ik ∥yi∥22.

(29)

Note that the quantities with bars and subscript kt are the
weighted sums of these quantities over the weights for the kth
hypersphere at iteration t, and that α(t)

ik is the mean of a von
Mises-Fisher distributions with parameters κ

(t)
ik and µ

(t)
ik .

Finally, note that γ
(t)
ik is the a posteriori probability that

observation #i belongs to the kth hypersphere, which is
a useful piece of information. Indeed, it can be used to
assign each data to one of the hyperspheres according to
the maximum a posteriori (MAP) rule: yi belongs to the kth
hypersphere if and only if k = argmaxj γ

(t)
ij .

D. Hyperparameter Estimation

The method presented before assumes that the hyperpa-
rameters κk and µk of the hidden variables xi are known.
When these parameters are unknown, they can be estimated
using different methods presented in [11], such as empirical
or hierarchical Bayesian inference. In this paper, we propose
to include these parameters in the vector θ (which explains
why some terms depend on κk and µk in (12)). This strategy
results in additional updates for their estimates in the M-step
using their MLE given the current estimation of the hidden
variables, i.e.,

κ
(t+1)
k = A−1

d (∥ukt∥2), µ
(t+1)
k =

ukt

∥ukt∥2
. (30)

Note that these equations have been obtained by using the
expressions of the MLEs of the parameters of a von Mises-
Fisher distribution [14, Chap. 10.3.1]. Note also that the
inverse function A−1

d has no closed-form expression but can
be computed using a two-steps iterative method [15].

III. SIMULATION RESULTS

In all the experiments presented in this paper, the EM
algorithm was initialized as follows: the dataset was par-
titioned into K clusters (corresponding to the number of
hyperspheres) using the k-means algorithm [16]. Then, the
iterative maximum likelihood (IML) algorithm of [17] was run
on each cluster to estimate the hypersphere radii and centers
denoted as ĉk and r̂k for k = 1, ...,K. The other parameters
(noise variances, mixture proportions and hyperparameters of
the von Mises-Fisher distributions) were finally initialized
using their ML estimators [18, Chap. 7], i.e., for hypersphere
k, σ̂2

k = 1
d

(
∥ȳk − ĉk∥22 − r̂2k

)
, π̂k = nk

n , µ̂k = ȳk

∥ȳk∥2
and

κ̂k = A−1
d (∥ȳk∥2), where ȳk is the mean of the nk obser-

vations assigned to hypersphere k, and A−1
d has been defined

previously. Note that in all experiments, the hyperparameters
κk,µk are unknown and are therefore estimated jointly with
the other parameters rk, ck, σ

2
k and πk.

A. Simulated 2D LiDAR

The first experiments were conducted with d = 2, K = 8
and rk = 3, κk = 5, πk = 1

K , σ2
k = 0.1 for k = 1, . . . ,K. The

geometry configuration is a simplified version of the LiDAR
calibration problem. A LiDAR is assumed to be in the center
of the scene. Thus, the values of the mean vectors µk are the
unitary vectors pointing from each circle center to the LiDAR.
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Fig. 1: Observations, ground truth and estimated circles.

After defining the problem geometry, n = 1000 observations
were generated according to (3). The LiDAR configuration,
the observations and the estimated circles are displayed in
Fig. 1. The proposed algorithm provides better results than
the IML reference, due to the use of the von Mises-Fisher
prior distributions. Examples of mean square errors (MSEs)
of θk for the different circles are displayed in Fig. 2 as a
function of the iteration number, illustrating the algorithm
convergence. Note that the final values of these MSEs depend
on the circle positions with respect to the LiDAR and the
values of the model hyperparameters. Finally, as the most
important parameters for LiDAR calibration are the circle
centers, the MSEs of c are displayed in Fig. 3 versus the
number of iterations. Having a global MSE for c lower than
-10 dB is sufficiently accurate for LiDAR calibration, which
is an interesting result.

B. Monte-Carlo simulations

To better understand the behaviour of the proposed method
as a function of the noise level, NMC = 500 Monte-Carlo
simulations were performed for different values of the noise
variance σ2. The resulting averaged MSEs of θ are shown in
Fig. 4 for both the proposed EM approach and the benchmark
IML method. Figs. 5 and 6 display the average MSEs of the
vector of circle centres c and the MSEs of the hyperparameter
vector

(
κk,µ

T
k

)T
. All these results show that the proposed EM

algorithm has a good performance, when compared to the IML
method.

IV. CONCLUSION

This paper studied a new EM algorithm for estimating
the centers and radii of multiple hyperspheres for LiDAR
calibration. A mixture of von Mises-Fisher distributions was
assigned to hidden variables located on the unit hypersphere
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Fig. 2: MSEs of θk versus the number of iterations of the EM
algorithm (initial values obtained using the k-means algorithm
and IML initialization).
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Fig. 3: MSE of c versus the number of iterations for the
proposed EM algorithm.
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indicating that the observations are close to some parts of
the hyperspheres, depending on the LiDAR location with
respect to these hyperspheres. Categorical distributions were
also assigned to hypershere indicators indicating to which
hypersphere the observations correspond. The proposed al-
gorithm only requires two parameters to be adjusted: the
stopping criterion for the EM algorithm and the number of
hyperspheres. Note that the number of hyperspheres will be
known for practical applications related to LiDAR calibration.
However, it could be estimated using criteria such as the
Bayesian Information Criterion (BIC) [19], or using a split
and merge approach as in [20]. Finally, it is interesting
to note that the hyperparameters of the von Mises-Fisher
distributions are also estimated by the algorithm. The proposed
algorithm was evaluated for circle fitting in a realistic scenario.
The results obtained on simulated data are very encouraging
showing the competitiveness of the proposed approach with
respect to the IML reference method. Future work include the
generalization of the proposed work to the robust estimation

of hypersphere mixtures, when outliers are contaminating the
LiDAR measurements. It would be also interesting to analyse
the sensitivity of the algorithm to its initialization, to the
number of iterations for IML, to hyperparameter estimation...
Finally, the proposed algorithm could be generalized to other
noise distributions, e.g., to mitigate the impact of outliers or
to take into account the geometry of the problem.
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